Выпарной аппарат с вынесенной греющей камерой - Курсовая работа

бесплатно 0
4.5 85
Сравнительная характеристика выпарных теплообменных аппаратов, физико-химическая характеристика процесса. Эксплуатация выпарных аппаратов и материалы, применяемые для изготовления теплообменников. Тепловой расчет, уравнение теплового баланса аппарата.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
При передаче тепла через стенку теплоносители не смешиваются, и каждый из них движется по отдельному каналу; поверхность стенки, разделяющей теплоносители, используется для передачи тепла и называется поверхностью теплообмена и является основным расчетным конструктивным параметром теплообменных аппаратов (теплообменников). Установки, состоящие из одиночного аппарата вторичный пар, из которого не используется (при выпаривании под атмосферным давлением или при разряжении) или используется вне аппарата, называются однокорпусными выпарными установками. Наибольшее распространение получили выпарные аппараты с паровым обогревом, имеющие поверхность теплообмена, выполненную из труб. Выпарные аппараты с паровым обогревом состоят из двух основных частей: а) кипятильник (греющая камера), в котором расположена поверхность теплообмена и происходит выпаривание раствора; Выпарные аппараты с горизонтальными трубами (пар пропускается по трубам, жидкость - снаружи труб) могут быть изготовлены со значительными поверхностями теплообмена - до 800 м2 и более.Воды является наиболее изученным соединением; ее свойства использованы при определении единиц измерения физических величин (плотность, температура, теплота, теплоемкость). Понижение уровня раствора часто нарушает работу аппарата, поэтому описанный способ проведения процесса обычно видоизменяют следующим образом, начиная с момента закипания раствора, в аппарат непрерывно подают слабый раствор в таком количестве, чтобы уровень раствора не изменялся. Понижение уровня раствора часто нарушает работу аппарата, поэтому описанный способ проведения процесса обычно видоизменяют следующим образом, начиная с момента закипания раствора, в аппарат непрерывно подают слабый раствор в таком количестве, чтобы уровень раствора не изменялся. обеспечивать систематическое питание выпарных аппаратов раствором, подогретым до температуры, близкой к температуре кипения; Конечная температура раствора (температура кипения раствора в сепараторе) при которой упаренный раствор выводится из аппарата. где тк - температура кипения раствора в сепараторе, ;В расчетной записке произведен расчет площади теплообмена, что является главным показателем.

Введение
Теплообменом называется процесс переноса теплоты, происходящий между телами, имеющими различную температуру. В результате передачи теплоты происходят: нагревание - охлаждение, парообразование - конденсация, плавление - кристаллизация. Теплообмен имеет важное значение для проведения процессов выпаривания, сушки, перегонки и др.

Движущей силой процесса теплообмена является разность температур.

Вещества и тела, участвующие в процессе теплообмена, называются теплоносителями. Теплоносители с более высокой температурой, отдающие теплоту в процессе теплообмена, называются горячим теплоносителем. Вещества с более низкой температурой, воспринимающие теплоту в процессе теплообмена, называются холодными теплоносителями.

Существует два основных способа проведения тепловых процессов: путем непосредственного соприкосновения теплоносителей и передачей тепла через стенку, разделяющую теплоносители.

При передаче тепла непосредственным соприкосновением теплоносителей обычно смешиваются друг с другом, что не всегда допустимо, поэтому способ применяется редко, хотя он проще в аппаратурном оформлении.

При передаче тепла через стенку теплоносители не смешиваются, и каждый из них движется по отдельному каналу; поверхность стенки, разделяющей теплоносители, используется для передачи тепла и называется поверхностью теплообмена и является основным расчетным конструктивным параметром теплообменных аппаратов (теплообменников).

Выпаривание - процесс концентрирования растворов твердых нелетучих веществ или мало летучих веществ путем частичного испарения растворителя при кипении жидкости.

В ряде случаев при выпаривании растворов твердых веществ достигается насыщение раствора; при дальнейшем удалении растворителя из такого раствора происходит кристаллизация, то есть выделение из него растворенного твердого вещества. Применяется для концентрирования растворов нелетучих веществ.

Получение высококонцентрированных растворов, практически сухих и кристаллических продуктов облегчает и удешевляет их перевозку и хранение.

В промышленности в большинстве случаев выпариваются водные растворы различных веществ.

Тепло для выпаривания можно подводить любыми теплоносителями, применяемыми при нагревании. Для нагрева выпариваемых растворов до кипения используют топочные газы, электрообогрев, но наибольшее применение находит водяной пар (характеризуется высоким коэффициентом теплоотдачи).

Выпаривание ведут как под атмосферным, так и под пониженным или повышенным давлением.

Используют в производстве минеральных удобрений, сахара, кормовых дрожжей. Также применяют при концентрировании водных растворов щелочей (едкое кали и едкий натр), солей.

1.

Техническая часть

1.1 Сравнительная характеристика аппаратов для данного процесса

Теплообменники - устройства, в которых осуществляется теплообмен между греющей и нагреваемой средами.

В теплообменных аппаратах могут происходить различные тепловые реакции: нагревание, охлаждение, испарение, конденсация, кипение, затвердевание и сложные комбинированные процессы. Теплообменные аппараты применяются практически во всех отраслях промышленности и, в зависимости от назначения, называются подогревателями, испарителями, конденсаторами, регенераторами, парообразователями, кипятильниками, выпарными аппаратами и т.д.

В зависимости от назначения производственных процессов в качестве теплоносителей могут применяться самые различные газообразные, жидкие и твердые среды.

Установки, состоящие из одиночного аппарата вторичный пар, из которого не используется (при выпаривании под атмосферным давлением или при разряжении) или используется вне аппарата, называются однокорпусными выпарными установками.

Большим распространением пользуются многокорпусные выпарные установки, включающие несколько соединенных друг с другом аппаратов (корпусов), работающих под давлением, понижающимся по направлению от первого корпуса к последнему. В таких установках можно применять вторичный пар, образующийся в каждом предыдущем корпусе, для обогрева последующего корпуса. При этом свежим паром обогревается только первый корпус. Образующийся в первом корпусе вторичный пар направляется на обогрев второго корпуса, в котором давление ниже и т.д., вторичный пар из последнего корпуса поступает в конденсатор или используется вне установки.

Таким образом, в многокорпусных выпарных установках осуществляется многократное использование одного и того же количества тепла (тепла, отдаваемого греющим паром в первом корпусе), это позволяет сэкономить значительное количество потребляемого свежего пара.

Устройство выпарных аппаратов.

Наибольшее распространение получили выпарные аппараты с паровым обогревом, имеющие поверхность теплообмена, выполненную из труб. Выпарные аппараты с паровым обогревом состоят из двух основных частей: а) кипятильник (греющая камера), в котором расположена поверхность теплообмена и происходит выпаривание раствора;

б) сепаратор - пространство, в котором вторичный пар отделяется от раствора.

Необходимость в сепараторе составляет основное конструктивное отличие выпарных аппаратов от теплообменников. В зависимости от характера движения кипящей жидкости в выпарном аппарате различают: 1. Выпарные аппараты со свободной циркуляцией;

2. Выпарные аппараты с принудительной циркуляцией;

3. Выпарные аппараты с естественной циркуляцией;

4. Пленочные выпарные аппараты.

Выпарные аппараты со свободной циркуляцией.

В этих аппаратах неподвижный или медленно движущийся раствор находится снаружи труб. К данной группе относятся аппараты, выполненные в виде чаш или котлов, поверхность теплообмена образована стенками аппарата.

Рисунок 1. Выпарной аппарат с горизонтальными трубами

Выпарные аппараты с горизонтальными трубами (пар пропускается по трубам, жидкость - снаружи труб) могут быть изготовлены со значительными поверхностями теплообмена - до 800 м2 и более. Для компенсации удлинения труб и разборки аппарата с целью очистки крепление труб в трубных решетках делают на сальниках или применяют U- образные трубы.

Основным недостатком является трудность очистки межтрубного пространства, вследствие чего они не пригодны для выпаривания кристаллизующихся растворов. Кроме того, такие аппараты имеют невысокий коэффициент теплопередачи, громоздки и требуют значительного количества металла для изготовления. В настоящее время они применяются редко, вытесняясь более совершенными конструкциями.

Выпарные аппараты с естественной циркуляцией.

1 - циркуляционная труба; 2 - кипятильная труба.

Рисунок 2. Схема естественной циркуляции.

Естественная циркуляция возникает в замкнутой системе, состоящей из необогреваемой циркуляционной (опускной) трубы 1 и обогреваемых подъемных труб 2. Если жидкость в подъемных трубах нагрета до кипения, то в результате испарения части жидкости в этой трубе образуется парожидкостная смесь, плотность которой меньше плотности самой жидкости. Таким образом, вес столба жидкости в циркуляционной трубе больше, чем в подъемных трубах, вследствие чего происходит упорядоченное движение (циркуляция) кипящей жидкости по пути: подъемные трубы > паровое пространство > опускная труба > подъемные трубы и т. д.

Для естественной циркуляции требуется два условия: 1. Достаточная высота уровня жидкости в опускной трубе, чтобы уравновесить столб парожидкостной смеси в кипятильных трубах и сообщить этой смеси необходимую скорость;

2. Достаточная интенсивность парообразования в кипятильных трубах, чтобы парожидкостная смесь имела, возможно, малую плотность.

При небольшом уровне жидкости в опускной трубе парожидкостная смесь не может подняться до верха кипятильных труб; при этом не происходит циркуляции, и работа аппарата сопровождается резким снижением производительности и быстрым покрыванием труб накипью.

Выпарной аппарат с центральной циркуляционной трубой является одной из наиболее старых, но широко распространенных конструкций.

1 - корпус; 2 - кипятильные трубы; 3 - циркуляционная труба; 4 - сепаратор; 5 - отбойник.

Рисунок 3. Выпарной аппарат с центральной циркуляционной трубой

Греющая камера состоит из ряда вертикальных кипятильных труб 2, обогреваемых снаружи паром. По оси греющей камеры расположена циркуляционная труба 3 значительно большего диаметра, чем кипятильные трубы. Греющий пар подается в межтрубное пространство, конденсируется и отводится из аппарата в виде конденсата. Упаренный раствор также непрерывно удаляется через штуцер, находящийся в днище аппарата. Парообразование внутри центральной трубы значительно меньше, чем в кипятильных трубах, так как за единицу объема жидкости в ней приходится меньшая теплопередающая поверхность. Раствор выдавливается в кипятильные трубки, поднимается по ним вверх, частично выпаривается и, освобожденный вверху от пара, возвращается вниз по центральной трубе. Образующийся пар удаляется в верхней части аппарата, пройдя предварительно через каплеуловитель.

Недостатки аппарата: жесткая конструкция греющей камеры, не имеющая температурной компенсации.

Достоинства: простота конструкции и легкость доступа для чистки и ремонта.

Выпарной аппарат с подвесной греющей камерой состоит из греющей камеры 2, которая свободно подвешивается внутри корпуса 1, опираясь на лапы.

1 - корпус; 2 - кожух греющей камеры; 3 - кипятильные трубы; 4 - труба для подвода пара к греющей камере.

Рисунок 4. Выпарной аппарат с подвесной греющей камерой

Греющий пар подается в межтрубное пространство нагревательной камеры по трубе 4. Образующийся вторичный пар проходит сепаратор над греющими трубками и далее инерционный каплеуловитель, из которого уловленная жидкость стекает вниз по трубе.

Принцип циркуляции: Малоэмульгированный раствор изза большой плотности опускается вниз по кольцевому пространству между корпусом аппарата и нагревательной камерой, передавливая вверх постоянно образующуюся в трубках более легкою парожидкостную эмульсию.

Погружение нагревательной камеры в выпариваемую среду препятствует возникновению температурных напряжений, так как в этом случае корпус камеры и трубки находятся в одинаковых температурных условиях.

Недостатками являются усложнение конструкции и большие габариты.

Достоинства - повышенный коэффициент теплопередачи за счет хорошего охлаждения раствора в кольцевом пространстве и легкость выемки греющей камеры из аппарата для чистки, ремонта или замены.

Выпарной аппарат с вынесенной греющей камерой состоит из нагревательной камеры (кипятильника) 1, представляющей собой пучок труб, сепаратора 3 и циркуляционной трубы 4, присоединенной к нижней растворной камере.

1 - кипятильник; 2 - труба для парожидкостной смеси; 3 - сепаратор; 4 - циркуляционная труба.

Рисунок 5. Выпарной аппарат с вынесенной греющей камерой

Выпариваемый раствор, поднимаясь по трубкам, нагревается и по мере подъема вскипает. Образовавшаяся парожидкостная смесь направляется в сепаратор, где происходит разделение жидкой и паровой фаз. Вторичный пар, пройдя сепаратор и брызгоуловитель, освобождается от капель, а раствор возвращается по циркуляционной трубе в греющую камеру.

Высота трубок в таких аппаратах составляет 5 … 7 м. Сечение циркуляционной трубы равно или больше площади поперечного сечения всех кипятильных трубок. В результате значительной скорости циркуляционного раствора повышается коэффициент теплоотдачи и уменьшается опасность отложения пристенных осадков.

Чистка и замена трубок выпарных аппаратов с выносной греющей камерой достаточно удобны.

Так же в промышленности применяют выпарные аппараты: ? С поднимающейся пленкой;

? С падающей пленкой;

? роторный прямоточный аппарат;

? барботажный выпарной аппарат;

? С погружными горелками.

Вывод
В расчетной записке произведен расчет площади теплообмена, что является главным показателем. В результате был выбран выпарной аппарат по ГОСТ 11987 со следующими параметрами: Поверхность теплообмена, мм d = 160

Длина труб l = 4000

Диаметр греющей камеры D = 1200

Диаметр сепаратора, мм D1 = 2400

Диаметр циркуляционной камеры, мм D2 = 700

Высота аппарата, м H = 13500

Масса аппарата, кг m = 12000

Список литературы
1. Романков П.Г., Курочкина М.И. Примеры и задачи по курсу

« Процессы и аппараты химической промышленности»: Учеб. Пособие для техникумов. - Л,: Химия, 1982. - 232 с.

2. Плановский А.Н., Фамм В.М., Каган С. З. Процессы и аппараты химической технологии. 5 изд., пер. и доп. - М.: Химия, 1968. - 848 с.

3. Борисов Г.С., Брыков В.П., Дытнерский Ю.И. Основные процессы и аппараты химической технологии: Пособие по проектированию. 2 изд., пер. и доп. - М.: Химия, 1991. - 496 с.

4. Баранов Д.А., Кутепов А.М. Процессы и аппараты: Учебник для студ. Учреждений средн. Проф. Образования. - М.: Издательский центр « Академия», 2004. - 304 с.

5. Ивчатов А.А., Малов В.И. Химия воды и микробиология: Учебное пособие для техникумов. - М.: ИНФРА - М, 2006. - 218 с.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?