Вычислительная математика - Учебное пособие

бесплатно 0
4.5 49
Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними. После того, как математическая модель составлена, переходят к постановке вычислительной задачи. Под вычислительными (численными) методами подразумеваются приближенные процедуры, позволяющие получать решение в виде конкретных числовых значений. Для решения одной и той же задачи могут быть использованы различные вычислительные методы, поэтому нужно уметь оценивать качество различных методов и эффективность их применения для данной задачи.Существуют четыре источника погрешностей, возникающих в результате численного решения задачи. Погрешность математической модели связана с ее приближенным описанием реального объекта. Например, если при моделировании экономической системы не учитывать инфляции, а считать цены постоянными, трудно рассчитывать на достоверность результатов. Будем в дальнейшем предполагать, что математическая модель фиксирована и ее погрешность учитывать не будем. Исходные данные, как правило, содержат погрешности, так как они либо неточно измерены, либо являются результатом решения некоторых вспомогательных задач.Определим вначале понятие устойчивости решения. Решение задачи y* называется устойчивым по исходным данным x*, если оно зависит от исходных данных непрерывным образом. Говорят, что задача поставлена корректно, если выполнены следующие три условия: 1. Если хотя бы одно из этих условий не выполнено, задача называется некорректной. Метод решения задачи называется прямым, если он позволяет получить решение после выполнения конечного числа элементарных операций.Значение x*, при котором f(x*) = 0, называется корнем (или решением) уравнения (2.1). Корень x* уравнения (2.1) называется простым, если первая производная функции f(x) в точке x* не равна нулю, т. е. f "(x*) 0. Если же f "(x*) = 0, то корень x* называется кратным корнем.В процессе приближенного отыскания корней уравнения (2.1) обычно выделяют два этапа: локализация (или отделение) корня и уточнение корня. Иногда удобно бывает локализовать корень с помощью построения графика или таблицы значений функции y = f(x). На наличие корня на отрезке [a, b] указывает различие знаков функции на концах отрезка. Если функция f непрерывна на отрезке [a, b] и принимает на его концах значения разных знаков, так, что f(a)f(b) <0, то отрезок [a, b] содержит по крайней мере один корень уравнения f(x) = 0. Пусть функция f(x) непрерывна на отрезке [a0, b0] и принимает на концах отрезка значения разных знаков, т.е. f(a0)f(b0) <0.Пусть уравнение (2.1) можно заменить эквивалентным ему уравнением x = j(x). Например, уравнение - 0.5 = 0 можно заменить эквивалентным ему уравнением x = 0.5sinx. Продолжая этот процесс неограниченно, получим последовательность приближений к корню: xn 1 = j(xn). Если в интервале, содержащем корень x* уравнения (2.4), а также его последовательные приближения x0, x1, …, xn, …, вычисляемые по формуле (2.5), выполнено условие: |j"(x)| ? q <1, (2.7) то x* = xn. т. е. итерационный процесс сходится и справедлива следующая оценка погрешности: |xn - x*| ? qn|x0 - x*| (2.8) Например, вычислив значения f(x) на концах отрезка, получим: f(p/6)> 0, а f(p/3)< 0, т. е. функция на концах отрезка имеет разные знаки, что в соответствии с теоремой 2.1 указывает на то, что внутри отрезка есть корень.Требуется найти решение системы линейных уравнений: a11x1 a12 x2 a13x3 … a1nxn = b1 a21x1 a22 x2 a23x3 … a2nxn = b2 a31x1 a32 x2 a33x3 … a3nxn = b3 (3.1) По правилу Крамера система n линейных уравнений имеет единственное решение, если определитель системы отличен от нуля (det Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций.Основная идея метода исключений Гаусса состоит в том, что система уравнений (3.1) приводится к эквивалентной ей системе с верхней треугольной матрицей (прямой ход исключений), а затем неизвестные вычисляются последовательной подстановкой (обратный ход исключений). Прямой ход состоит из n - 1 шагов. На первом шаге исключается переменная x1 из всех уравнений, кроме первого. Для этого нужно из второго, третьего, …, n-го уравнений вычесть первое, умноженное на величину m = , i = 2, 3, …, n. Все уравнения (3.6), кроме первого, образуют систему (n - 1)-го порядка.Для уменьшения ошибок округления применяют метод исключения Гаусса с выбором главного элемента по столбцу. Прямой ход так же, как и для схемы единственного деления, состоит из n - 1 шагов. На первом шаге прежде, чем исключать переменную x1, уравнения переставляются так, чтобы в левом верхнем углу был наибольший по модулю коэффициент ai1, i = 1, 2, …, n. В дальнейшем, на k-м шаге, прежде, чем исключать переменную xk, уравнения переставляются так, чтобы в левом верхнем углу был наибольший

План
Содержание

Введение

Тема 1. Решение задач вычислительными методами. Основные понятия

1.1 Погрешность

1.2 Корректность

1.3 Вычислительные методы

Тема 2. Решение нелинейных уравнений

2.1 Постановка задачи

2.2 Основные этапы отыскания решения

2.3 Метод деления отрезка пополам (метод дихотомии, метод бисекции)

2.4 Метод простых итераций

2.5 Метод Ньютона (метод касательных)

2.6 Метод секущих (метод хорд)

2.7 Метод ложного положения

Тема 3. Решение систем линейных алгебраических уравнений

3.1 Постановка задачи

3.2 Метод исключения Гаусса. Схема единственного деления

3.3 Метод исключения Гаусса с выбором главного элемента по столбцу

3.4 Вычисление определителя методом исключения Гаусса

3.5 Вычисление обратной матрицы методом исключения Гаусса

3.6 Метод простой итерации Якоби

3.7 Метод Зейделя

Тема 4. Приближение функций

4.1 Постановка задачи

4.2 Приближение функции многочленами Тейлора

4.3 Интерполяция функции многочленами Лагранжа

4.4 Аппроксимация функций. Метод наименьших квадратов

Тема 5. Численное интегрирование функций одной переменной

5.1 Постановка задачи численного интегрирования

5.2 Метод средних прямоугольников

5.3 Метод трапеций

5.4 Метод Симпсона (метод парабол)

5.5 Правило Рунге практической оценки погрешности

Тема 6. Численное решение дифференциальных уравнений

6.1 Постановка задачи Коши

6.2 Метод Эйлера

6.3 Модифицированные методы Эйлера

6.4 Метод Рунге - Кутты

Контрольные задания по курсу “Вычислительные методы”

Указания к выполнению лабораторных работ

Указания к выполнению курсовых работ

Краткие сведения о математиках

Список литературы

Введение
Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Таким формализованным описанием может быть система линейных, нелинейных или дифференциальных уравнений, система неравенств, определенный интеграл, многочлен с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.

После того, как математическая модель составлена, переходят к постановке вычислительной задачи. При этом устанавливают, какие характеристики математической модели являются исходными (входными) данными, какие - параметрами модели, а какие - выходными данными. Проводится анализ полученной задачи с точки зрения существования и единственности решения.

На следующем этапе выбирается метод решения задачи. Во многих конкретных случаях найти решение задачи в явном виде не представляется возможным, так как оно не выражается через элементарные функции. Такие задачи можно решить лишь приближенно. Под вычислительными (численными) методами подразумеваются приближенные процедуры, позволяющие получать решение в виде конкретных числовых значений. Вычислительные методы, как правило, реализуются на ЭВМ. Для решения одной и той же задачи могут быть использованы различные вычислительные методы, поэтому нужно уметь оценивать качество различных методов и эффективность их применения для данной задачи.

Затем для реализации выбранного вычислительного метода составляется алгоритм и программа для ЭВМ. Современному инженеру важно уметь преобразовать задачу к виду, удобному для реализации на ЭВМ и построить алгоритм решения такой задачи.

В настоящее время на рынке программного обеспечения широко представлены как пакеты, реализующие наиболее общие методы решения широкого круга задач (например, Maple, Mathcad, MATLAB), так и пакеты, реализующие методы решения специальных задач (например, задач газовой динамики).

Результаты расчета анализируются и интерпретируются. При необходимости корректируются параметры метода, а иногда математическая модель, и начинается новый цикл решения задачи.

Тема 1. Решение задач вычислительными методами.

Основные понятия

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?