Понятие о выборочном наблюдении, его основные задачи. Случайность отбора единиц и ошибки выборки. Распространение выборочных результатов на генеральную совокупность. Потребность в использовании выборочного метода, выработке вероятностных суждений.
Ту или иную единицу, попавшую в выборку, после регистрации снова возвращают в генеральную совокупность, и она сохраняет равную возможность со всеми прочими единицами при повторном отборе единиц вновь попасть в выборку («отбор по схеме возвращенного шара»). При бесповторной выборке единица совокупности, попавшая в выборку, в генеральную совокупность не возвращается и в дальнейшем в выборке не участвует; т. е. последующую выборку делают из генеральной совокупности уже без отобранных ранее единиц («отбор по схеме невозвращенного шара»). Так, при 5%-ной выборке из партии деталей в 1000 ед. объем выборки п составляет 50 ед., а при 10%-ной выборке - 100 ед. и т.д. Зависимость средней ошибки выборки от ее объема и степени варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х, р) неизвестны, и следовательно, не представляется возможным нахождение реальной ошибки выборки непосредственно по формулам (6.1), (6.2). Так, при 2%-ной выборке отбирается и проверяется каждая 50-я единица (1 : 0,02), при 5 %-ной выборке - каждая 20-я единица (1 : 0,05), например, сходящая со станка деталь.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы