Формування свідомого розуміння учнями змісту теореми про пропорційні відрізки та ідеї її доведення. Характеристика можливості запису узагальненої теореми Фалеса у вигляді двох різних рівностей. Створення мотивації навчальної діяльності школярів на уроці.
Тема: Узагальнена теорема ФалесаМета: сформувати в учнів поняття про відношення відрізків, пропорційні відрізки; сформувати свідоме розуміння учнями змісту теореми про пропорційні відрізки (узагальнення теореми Фалеса) та ідеї її доведення, а також можливість запису теореми у вигляді двох різних рівностей. · використовувати теорему про пропорційні відрізки для розвязування задачі на побудову четвертого пропорційного відрізка. Теорема Піфагора»), то на цьому етапі уроку доречно буде надати учням інформацію про: · орієнтовний план вивчення розділу; Якщо на попередньому уроці було запропоновано учням вдома розвязання задач контрольної роботи або корекційну роботу тощо), то правильність виконання цієї роботи вчитель перевіряє, зібравши зошити на перевірку (для оцінювання). Для розуміння учнями логіки вивчення матеріалу та з метою створення мотивації навчальної діяльності учнів на уроці пропонуємо їм виконати практичну роботу.Як показує досвід, труднощі сприйняття змісту, а звідси застосування узагальненої теореми Фалеса, виникають тому, що учні не розуміють змісту поняття «пропорційні відрізки». За такого способу вивчення матеріалу формулювання теореми про пропорційні відрізки є простим узагальненням результатів практичної роботи, тому, перш ніж формулювати твердження теореми, учитель може запропонувати учням самостійно скласти узагальнене твердження (виходячи із рівностей, які учні здобули під час виконання практичної роботи). Оскільки строге математичне доведення узагальненої теореми Фалеса є досить складним для учнів 8 класу, то надається лише ідея доведення твердження теореми про пропорційні відрізки із посиланням на доведену раніше теорему Фалеса. Після опрацювання поняття пропорційних відрізків та формулювання і доведення теореми про пропорційні відрізки бажано на прикладах закріпити шляхом складання відповідних пропорцій за готовими рисунками розуміння учнями змісту теореми. Якщо учні добре засвоїли теоретичний матеріал, а також демонструють розуміння змісту теореми та вміння застосовувати його на прикладах, можна на цьому уроці вивчити схему розвязання базової задачі на побудову четвертого пропорційного відрізка.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы