Уравнения Максвелла - Презентация

бесплатно 0
4.5 37
Гипотеза Максвелла о том, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Обобщенная теорема о циркуляции вектора. Система уравнений.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Но ЭДС в любой цепи возникает только когда в ней на носители тока действуют сторонние силы - силы неэлектростатического ПРОИСХОЖДЕНИЯМАКСВЕЛЛ выдвинул гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Между обкладками заряжающегося и разряжающегося конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор протекают токи смещения в тех местах, где отсутствуют проводники. По Максвеллу, переменное электрическое поле в конденсаторе в каждый момент времени создает такое магнитное поле, как если бы между обкладками конденсатора существовал ток смещения, равный току в подводящих проводах . Из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно - способность создавать в окружающем пространстве магнитное поле.В диэлектриках ток смещения состоит из двух слагаемых: - плотность тока смещения - плотность тока поляризации - тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот диполей в полярных молекулах). Плотность полного тока: Полный ток в цепи переменного тока всегда замкнут, то есть на концах проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника есть ток смещения, который замыкает ток проводимости.Максвелл обобщил теорему о циркуляции , введя в ее правую часть полный ток: - обобщенная теорема о циркуляции вектора Н.Система уравнений Максвелла.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?