Световые режимы в птицеводстве - Реферат

бесплатно 0
4.5 57
Значение основных режимов прерывистого освещения. Схема режима прерывистого освещения содержания промышленных несушек. Источники освещения и освещенность. Механизм формирования биологических ритмов у кур. Световые режимы, используемые в птицеводстве.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Установлено, что годовой расход электроэнергии на технологические процессы при содержании птицы в птичниках размером 18x96 м распределяется следующим образом: на работу приточных и вытяжных вентиляторов - 145 тыс. КВТ.ч., или 69,4%; на освещение - 58 тыс. КВТ.ч., или 27,8%; на уборку помета - 2,8 тыс. КВТ.ч., или 1,3%; на сбор и обработку яиц - 2,3 тыс. КВТ.ч., или 1,1%; на раздачу корма - 0,8 тыс. КВТ.ч., или 0,4%. В то же время рядом исследователей установлено, что на функциональную деятельность птицы существенное влияние оказывает периодичность смены света и темноты. Все составляющие световых режимов: фотопериод, освещенность, характер излучаемого светового потока, изменение продолжительности освещения во времени можно рассматривать, как синхронизирующие факторы внешней среды. По сравнению с этим световым режимом РПО по указанной выше схеме для взрослых кур, совмещенный с прерывистым освещением при выращивании молодняка, оказывает положительное влияние на птицу и повышает эффективность производства инкубационных и пищевых яиц. Возможно, это означает, что эпифиз не всегда одинаково чувствителен к изменениям в освещении, - что в течение суток есть периоды, когда его ритм подвержен влиянию внешних условий.Понимание времени, как фактора среды, позволило не только построить модель циркадианных изменений массы бройлеров, но и определить точки в функции развития процесса, где влияние времени снижается до минимального, или приобретает нулевое значение, а уровень действия факторов среды (в случае изменения в условиях освещения) значительно возрастает. В связи с этим следует обратить внимание на то, что в исследованиях влияния световых режимов на циркадианные изменения массы бройлеров, адекватные ритмы, близкие к оптимальным, были получены тогда, когда скорость изменения освещения и его уровень в периоды потенциальной готовности были близки таковым, существующим в естественных условиях.

Введение
Из года в год возрастает интерес к проблемам биоритмологии, методологические принципы которой проникают в исследования всех уровней организации живого - от молекулы до уровня целостного организма. И это понятно, если учесть, что в течение миллионов лет эволюционного развития шел процесс не только непрерывного усложнения и совершенствования структурной организации живых систем, но и процесс их временной организации. Адаптация организма к постоянно меняющимся условиям внешней среды обеспечивалась не отдельными организмами, а скоординированными во времени и пространстве, и соподчиненными между собой специализированными функциональными системами. Не случайно в настоящее время, через исследования временной организации биосистем, изучаются эколого-физиологические механизмы адаптации к среде обитания и изыскиваются научно-обоснованные средства коррекции биологических процессов, протекающих в живом организме.

В реализации ресурсо- и энергосберегающего направления развития промышленного птицеводства важная роль принадлежит интенсификации системы ведения отрасли. Одним из ведущих направлений экономного потребления ресурсов является совершенствование технологии производства на основе внедрения прерывистых режимов освещения птицы.

Интенсивная система ведения отрасли базируется на выращивании и содержании птицы в безоконных птичниках. Установлено, что годовой расход электроэнергии на технологические процессы при содержании птицы в птичниках размером 18x96 м распределяется следующим образом: на работу приточных и вытяжных вентиляторов - 145 тыс. КВТ.ч., или 69,4%; на освещение - 58 тыс. КВТ.ч., или 27,8%; на уборку помета - 2,8 тыс. КВТ.ч., или 1,3%; на сбор и обработку яиц - 2,3 тыс. КВТ.ч., или 1,1%; на раздачу корма - 0,8 тыс. КВТ.ч., или 0,4%.

Наиболее эффективному снижению потребления электроэнергии способствует прерывистый режим освещения. Он дает возможность в 3,0-3,5 раза сократить продолжительность светового дня для кур в течение суток.

Известно, что использование режима постоянного освещения при выращивании и содержании птицы способствует ускорению половой зрелости кур и петухов, повышению расхода кормов и электроэнергии на 1 голову, сокращению продолжительности эксплуатации, снижению сохранности поголовья, выхода деловых молодок и петухов, ухудшению показателей однородности птицы по живой массе. В то же время рядом исследователей установлено, что на функциональную деятельность птицы существенное влияние оказывает периодичность смены света и темноты. Использование режимов прерывистого освещения при выращивании и содержании птицы оказывает существенное влияние на нервную, эндокринную, половую системы, ее продуктивность и качество продукции.

Все составляющие световых режимов: фотопериод, освещенность, характер излучаемого светового потока, изменение продолжительности освещения во времени можно рассматривать, как синхронизирующие факторы внешней среды.

Свет - основной датчик времени практически для всех животных и растений. Этот фактор играет решающую роль даже в тех случаях, когда он не основной в экологии животного [39]. Сила воздействия света может определяться как амплитудой его изменений, так и спектральным составом [36].

Значение режимов прерывистого освещения

В целях экономии электроэнергии в США, Англии, Франции, Германии, странах СНГ, в том числе и в Белоруссии используются различные варианты режима прерывистого освещения (РПО), который заключается в следующем: в течение суток устанавливают не менее двух световых периодов (С), чередующихся с периодами темноты (Т). Если продолжительность световых периодов одинакова и периодов темноты тоже одинакова, РПО называют ритмичными или симметричными, если разная - аритмичным или асимметричным.

Ритмичные и аритмичные РПО неодинаково влияют на птицу, особенно на процесс яйцекладки. Так, РПО, заключающихся в равномерном чередовании коротких световых периодов, как правило, продлевает яйцекладку в течение суток. Наоборот, некоторые аритмичные РПО сдвигают время яйцекладки, и она проходит в сжатые сроки.

При выборе того или иного варианта РПО следует учитывать конкретные условия хозяйства, в частности, степень и надежность механизации производственных процессов, объем производства, обеспеченность полноценными кормами и прочее.

В США при содержании промышленных несушек получил распространение РПО, разработанный в Корнелском университете. Схема режима следующая: 2С:4Т:8С:10Т. Определено, что данный режим влияет на несушек эквивалентно 14-часовому световому дню: организм птицы как бы «не замечает» 4 ч темноты между двумя периодами света. Достоинство такого РПО является удобство его применения при любом оборудовании птичника, когда начало 8-часового периода света совпадает с началом рабочего дня операторов.

Распространенный в настоящее время световой режим состоит из одного периода света в течение суток, продолжительность которого сокращается в процессе выращивания молодняка и удлиняется во время яйцекладки кур. По сравнению с этим световым режимом РПО по указанной выше схеме для взрослых кур, совмещенный с прерывистым освещением при выращивании молодняка, оказывает положительное влияние на птицу и повышает эффективность производства инкубационных и пищевых яиц. Применение РПО при выращивании молодняка способствует существенному увеличению его сохранности (на 3-4% и более), делового выхода ремонтных курочек, а также снижению расхода корма в расчете на 1 гол.

В продуктивный период улучшается сохранность поголовья, а в итоге возрастает яйценоскость на начальную несушку; расход корма на 1000 яиц снижается до 10% и более, в большинстве случаев увеличивается масса яиц и улучшается качество скорлупы; до 6% и более повышается выход инкубационных яиц, на 2-5% - выход цыплят.

Внедрение РПО обеспечивает уменьшение расхода электроэнергии до 38% и более.

Источники освещения и освещенность

При введении РПО можно использовать для освещения, как лампы накаливания, так и люминесцентные. Последние более эффективны, так как они расходуют меньше электроэнергии для создания нужной освещенности, а срок их службы значительно длиннее. Кроме того, спектр излучения некоторых люминесцентных ламп положительно влияет на сохранность и продуктивность птицы.

Из выпускаемых промышленностью люминесцентных ламп рекомендуется при выращивании ремонтного молодняка использовать 40-ваттные лампы типа ЛДЦ-40, ЛБ-40 и ЛД-40 при содержании кур в продуктивный период - лампы ЛДЦ-40 и ЛБ-40 (по одной лампе в светильнике). Целесообразно применять лампы меньшей мощности, например 18-ваттные лампы ЛДЦ-18.

Освещенность в горизонтальной плоскости кормушек должна быть в пределах 10-40 лк; допустимы отклонения ±25%. Для строгого соблюдения параметров РПО следует максимально изолировать птичник от проникновения в него естественного света. С этой целью вентиляционные проемы в стенах и на потолке нужно оборудовать светозащитными приспособлениями.

Механизм формирования биологических ритмов у кур

У многих животных роль биологических часов, подверженных действию света, по-видимому, выполняет эпифиз (шишковидная железа), активный нейроэндокринный орган с разносторонним спектром физиологических действий [29]. Пути, по которым информация передается эпифизу у разных животных различны: или через определенные волокна зрительного тракта, не связанные со зрением, или даже прямо через череп [41]. Так эпифиз, удаленный у курицы и помещенный в питательную среду, реагирует на изменения освещенности [38]. Этот эксперимент показывает, что по крайней мере, в курином эпифизе имеются собственные фоторецепторы.

В эпифизе происходит превращение серотонина в гормон мелатонин, который выделяется в кровяное русло. Мелатонин, по-видимому, служит посредником в тех функциях эпифиза, которые связаны с учетом времени и световыми режимами [42]. У кур содержание циркулирующего в крови мелатонина обуславливает нормальные циркадианные ритмы (суточные) дневной активности и ночного покоя, а также циклические изменения температуры тела. Процесс превращения мелатонина в серотонин состоит из двух этапов, и его осуществляют два фермента, синтезируемые в эпифизе. Один из ферментов - N - ацетилтрансфераза (ацетилсеротонин-метилтрансфераза). От ее активности зависит количество мелатонина, выделяемого эпифизом в кровь, а оно, в свою очередь контролирует такие физиологические ритмы, как изменение температуры тела; и такие поведенческие реакции, как сон и бодрствование.

Поэтому считают, что N-ацетилтрансфераза служит для этих функций синхронизирующим фактором. У кур активность N-ацетилтрансферазы ночью в 27 раз выше, чем днем, а количество мелатонина в 10 раз выше, причем пики обеих величин приблизительно совпадают по времени [3]. При возрастании количества мелатонина, у кур понижается температура тела, они засыпают.

Поскольку число световых и темных часов в сутках на протяжении года изменяется, свет должен каким-то образом влиять на активность N-ацетилтрансферазных «часов». Эксперименты на курах показали, как это происходит. У кур, все время находящихся в темноте, сохраняется 24-часовой ритм N-ацетилтрансферазы, а при непрерывном освещении количество фермента уменьшается. Но большего внимания заслуживает тот факт, что у кур, выращенных в условиях чередования 12-часовых периодов света и темноты, и внезапно подвергшихся действию света во время одного из темных периодов, активность фермента резко падает. Эта реакция указывает на чувствительность эпифиза к свету. Правда, обратной реакции, при внезапном включении света в середине субъективного дня, исследователи не отмечали.

Возможно, это означает, что эпифиз не всегда одинаково чувствителен к изменениям в освещении, - что в течение суток есть периоды, когда его ритм подвержен влиянию внешних условий.

Эпифиз кур чувствителен к включению освещения в конце периодов темноты. С помощью этого органа они могли бы реагировать на разность в продолжительности, следующих друг за другом, ночей. Свет в утреннее время достигая эпифиза, уменьшает активность N-ацетилтрансферазы, что в свою очередь снижает количество выделяемого мелатонина. С уменьшением концентрации мелатонина в крови, у кур повышается температура тела, и у них начинается период активности. Поскольку в естественных условиях рассвет, в течение года, начинается в разное время суток, эпифизарные биологические часы должны ежедневно устанавливаться заново, сохраняя при этом общую продолжительность цикла, равную 24 часам. освещение птицеводство несушка прерывистый

Световые режимы, используемые в птицеводстве

Значение световых режимов в формировании продуктивности птицы глубоко осознается в сельскохозяйственном птицеводстве. Начало исследований, по изучению влияния искусственного освещения на организм птицы, положили исследователи Роуэн и Бенуа [цит. по 28]. Канадский зоолог Роуэн еще в двадцатых годах провел наблюдения над зябликами, пойманными осенью. Птиц содержали в клетках, но с помощью электрического освещения продолжительность дня была доведена до такой, какой она бывает весной. Как показали вскрытия птиц (проводившиеся с ноября по март), яичники их по уровню развития соответствовали репродуктивному периоду, обычно наступающему весной. Было также установлено, что нормальное развитие гонад зависит от постепенно возрастающего по продолжительности периода освещенности. Более резкое увеличение длительности светового дня оказало угнетающее действие на половые органы птицы. С 30-40-х прошлого века годов ведутся исследования влияния освещения на организм птицы [8,17].

В настоящее время в сельскохозяйственном птицеводстве используются самые разнообразные режимы освещения [4,11,12], позволяющие поддерживать продуктивность птицы на достаточно высоком уровне. В то же время необходимо отметить, что сознательное использование световых режимов с определенными характеристиками, для коррекции продуктивных показателей птицы, возможно только при условии соблюдения основных положений хронобиологии.

В любых условиях организм, если его поведение насильственно не регламентировано, способен адаптироваться к этим условиям, используя из всего диапазона, доступных ему по частоте суточных ритмов, тот, который обеспечивает ему максимально возможное благополучие, который, следовательно, адекватен наличной ситуации. Следует подчеркнуть, что понятие адекватного ритма не соответствует понятию оптимального. Хотя, конечно, какие-то варианты адекватного ритма и могут приближаться к оптимальному. Адекватность ритма означает лишь наиболее выгодное в данных условиях решение, проблемной для организма, ситуации. Однако, такое решение может оказаться для организма весьма «дорогим», требующим высоких напряжений; и очень далеким от того «идеала», к которому стремятся все биологические системы - максимальной эффективности при минимальных затратах энергии.

Напряженность, при формировании и поддержании адекватного ритма, может быть обусловлена, в частности, наличием в окружающей среде двух или более конкурирующих время датчиков, близких друг к другу по силе, но различающихся по положению фазы. Правильно организованная среда в изолированном пространстве (в том числе и в птичнике) должна включать в себя только синхронно действующие датчики времени. В идеале же, искусственная среда должна быть организована таким образом, чтобы адекватный ей ритм был близок к оптимальному, то есть наилучшим образом соответствовал потребностям организма.

Эффективность применяемых в настоящее время световых режимов в птицеводстве, не всегда поддается объяснению, так как нет определений и понятий, позволяющих оценить оптимальность изменений освещения в течение содержания и выращивания птицы. Если же учесть, что для всех организмов присущи эндогенные ритмы с разными периодами, с уже выясненными закономерностями их формирования, то эта задача становится вполне разрешимой. В понятие режима освещения входят в логической последовательности: спектральный состав светового потока и источников освещения, уровень освещенности и периодические чередования света и темноты. В принципе все используемые режимы, по чередованию света и темноты, можно разделить на несколько групп. Это постоянные режимы, в которых сутки разбиваются на два периода: с определенным соотношением свет: темнота (С:Т), постоянные режимы, с изменением продолжительности фотопериода в течение времени выращивания и содержания птицы. В последнее время все более широкое применение находят режимы прерывистого освещения, в которых смена С:Т проходит более 2-х раз в сутки. Они могут быть с постоянным и, изменяющимся со временем, соотношением С:Т. Используются импульсное (на фоне принятого режима подаются короткие «импульсы» света, с довольно высокой освещенностью) и варьирующие (уровень освещенности изменяется несколько раз в сутки).

Представляют интерес ахемеральные световые режимы, формирующие продолжительность суток большую или меньшую, чем 24 часа, но, как правило, укладывающуюся в размеры периода циркадианного (суточного) ритма. Проводятся исследования влияния ни птицу интенсивности светового потока и его спектрального состава.

В продуктивном птицеводстве эффективность применения разных световых программ может быть рассмотрена, в основном, с двух точек зрения. Это влияние их на репродуктивную функцию птиц или воздействие на увеличение живой массы. Именно эти два показателя имеют основное прикладное значение, и в то же время, являются интегрирующими по отношению к другим (сохранность, устойчивость к заболеваниям, оплата корма продукцией и др.), также имеющим значение в оценке эффективности производства.

Режимы с постоянным соотношением С:Т в течение производственного цикла, в настоящее время практически не используются для формирования репродуктивной функции кур, так как с достаточной степенью достоверности установлено, что и при выращивании курочек, и при содержании взрослых кур более эффективны дифференцированные световые режимы, формируемые в условиях искусственного освещения [13,14,15]. К 1979 году Пигаревым были разработаны рекомендации по формированию таких режимов [31]. Однако, в производстве мяса такие режимы, с постоянным соотношением С:Т, используются до настоящего времени. Существует мнение о достаточной эффективности круглосуточного освещения, или освещения с режимом 23 С:1 Т, причем в последнем случае, отключение света на 1 час, рекомендовано просто для того, чтобы избежать стрессовых ситуаций в случае аварийного отключения [10]. В то же время, изучение световых программ с соотношением 12С:12Т или 6С:18Т [44], показало не меньшую их эффективность в сравнении с круглосуточным освещением. Причем более оптимальные, указываются соотношения 17С:7Т-18С:6Т [45]. Таким образом, круглосуточное освещение не всегда эффективно и может вызывать стрессы у птицы, а при повышении внутриглазного давления - к слепоте. В таких условиях снижается жизнеспособность, причем постоянный свет и постоянная темнота одинаково отрицательны [22,1]. При отсутствии фотопериодичности снижается общая сопротивляемость организма к заболеваниям всех животных [20].

Ответ на вопрос об оптимальной продолжительности освещения, можно найти в изменениях продолжительности светового дня в естественных условиях. В субтропических зонах режим освещения считается наиболее комфортным [9]. К этой зоне можно отнести территории, располагающиеся примерно на 34-40? северной широты. Максимальные размеры фотопериода в этих широтах не бывает больше 14-15 часов, а минимальные - меньше 9. Даже на широте 58? максимальный фотопериод не превышает 18 часов, а минимальный - располагается в пределах 6 часов. Длина дня, для широт выше 60?, не может иметь экологического значения для кур, так как у них в филогенезе не могли выработаться специальные адаптации к таким длинным и ультракоротким периодам. Видимо поэтому более эффективной оказывается при выращивании бройлеров длина дня 17-18 часов. Этот период освещения сближает переменные адекватного и оптимального ритмов. Существование периодов темноты достаточной длительности необходимо для обеспечения восстановительной фазы циркадианного ритма, которая не менее важна для жизнедеятельности, чем активная.

Регулярные процессы с ритмической характеристикой устанавливаются у цыплят еще в период эмбрионального развития. Тот факт, что эндогенные циркадианные ритмы устанавливаются или сразу после вылупления цыпленка, или на второй день его жизни, не вызывает сомнения [2]. Но при постоянном освещении синтез мелатонина в эпифизе не происходит, и не возникает ритмичного изменения его содержания в крови, то есть в этом случае создается положение близкое к эпифизэктомии, а в условиях более коротких фотопериодов эпифиз подавляет ряд элементов агрессивного поведения цыплят [7].

Таким образом, при содержании птицы имеют значение только световые режимы с достаточными (в пределах 6-10 часов) периодами темноты. Причем длинные фотопериоды стимулируют репродуктивную функцию, более короткие - позволяют увеличить сохранность молодняка [37].

Дифференцированные режимы освещения птицы применяются более широко, и их в принципе можно разделить на две группы: С уменьшающейся со временем продолжительностью фотопериода, используемые, как правило, для выращивания молодняка;

С увеличивающейся со временем, продолжительностью фотопериода, используемые для формирования репродуктивной функции птицы.

Такие режимы исследованы в достаточной степени [18].

Можно провести некоторые примеры. Так, для стимуляции репродуктивной функции кур, рекомендуют увеличивать продолжительность освещения птицы, причем лучше это делать за счет утренних часов. Увеличение светового дня может быть равно 15 мин в неделю или от 30 минут до 1 часа. Оптимальной считается продолжительность светового дня 14-16 часов. Увеличение продолжительности фотопериода до 17 часов может оказаться неэффективным, но может привести и к положительным результатам, даже при увеличении фотопериода до 18 часов. Для выращивания молодняка более благоприятным оказывается, сокращающийся по продолжительности, световой день. При сравнительно коротком световом дне ремонтный молодняк мясных кур набирает массу быстрее, но резкое его сокращение от 24 до 14 часов, может снизить живую массу и сохранность бройлеров [6].

Нет сомнений в том, что такими световыми режимами формируется одно из состояний цирканнуального (сезонного, годового) ритма птицы. Предикативный характер влияния на птицу указанных световых программ сомнения не вызывает, но в производственных условиях используют разные варианты изменения длительности светового дня. Это или дискретные его изменения (1 раз в 5,7 дней; 1 раз в месяц и т.д.), или плановое (ежедневное) уменьшение, или увеличение его продолжительности. Разумеется предподчительным, с экологической точки зрения, представляется второй вариант. Дискретное увеличение продолжительности светового дня тоже позволит сформировать ту или иную фазу цирканнуального ритма, т.к. птица реагирует и просто на размеры фотопериода, но такой механизм формирования ритма приведет к определенному отклонению адекватного ритма от оптимального. Так, для синхронизации ритма активности с условиями освещения, при изменении продолжительности светового дня на 30 минут, птице понадобилось 5-7, а при увеличении фотопериода на 45 минут - 9-12 дней. Это объясняется общебиологическим свойством. В первые дни пребывания в непривычных условиях существования «биологические часы» стремятся сохранить предшествующий ритм жизнедеятельности организма. Непрерывное уравновешивание жизнедеятельности организма с ритмами факторов внешней среды представляет собой одно из конкретных выражений принципа единства организма и среды, но в разных случаях это уравновешивание требует разных затрат. Относительно резкое нарушение чередований света и темноты приводит к нарушению жизненных функций [26].

Широкие материалы для исследователей представила возможность использования режимов прерывистого освещения, без ущерба для продуктивных показателей птицы, первоначально вызванная энергосберегающими соображениями. В последующем оказалось, что программы прерывистого освещения позволяют не только сэкономить затраты электроэнергии, но и увеличить продуктивность сельскохозяйственной птицы. Режимы прерывистого освещения можно представить в виде двух больших групп. Это режимы с неизменным соотношением света и темноты; и режимы, в которых это соотношение меняется с возрастом птицы. Среди них можно также выделить световые программы с периодами равными (или кратными) одному часу и с периодами менее одного часа. Такое разделение, только на первый взгляд, может показаться произвольным, так как к настоящему времени накоплен достаточный фактический материал, свидетельствующий о том, что околочасовой ритм свойствен вообще всем живым системам разных организмов, в том числе и пищеварительной. Объяснение эффективности тех или иных режимов прерывистого освещения, с точки зрения биоритмологии, не вызывает затруднений. С одной стороны, ритмы в живых системах характеризуются высокой пластичностью, с другой, наличие в механизме формирования циркадианных ритмов фоторефрактерных интервалов времени, допускает их формирование по достаточно коротким световым сигналам.

Режимы освещения, не изменяющиеся с возрастом и кратные 1 часу, наиболее широкое применение нашли в технологии выращивания бройлеров. Сравнение таких режимов освещения, как 1С:2Т; 1С:1С и 2С:2Т; 18С:6Т; 3С:1Т и 1С:3Т, с круглосуточным (24С или 23С:1Т) показало высокую эффективность программ с соотношением 1С:3Т, позволяющих получить более высокую живую массу бройлеров. Авторы отмечают, что режимы 4С:2Т, 2С:2Т, 2С:1Т приводят к увеличению уровня продуктивной энергии и более высокой скорости роста бройлеров. Многие исследователи рекомендуют для выращивания бройлеров режимы с соотношением 1 ЧС:3-4ЧТ и отмечают, что даже соотношение 1С:1Т не приводило к снижению живой массы бройлеров, в сравнении с выращенными при круглосуточном освещении, или даже позволяет получить более высокие результаты. Но следует отметить, что в последнем случае, при круглосуточном освещении, отсутствовала ритмичность в потреблении корма. Есть сведения, что использование таких режимов, как 1С:2Т, 1С:3Т, приводит к тому, что птица потребляет в темные периоды от 23 до 35% корма.

Сравнение почти таких же световых программ 1С:3Т, 2С:6Т, 1С:3Т, 1С:4Т с освещением, имеющим периодичность 12С:12Т также показало довольно высокую эффективность прерывистых режимов, и особенно, имеющих соотношение 1С:3Т.

Есть данные об эффективности световых режимов с отношением 2С:3Т; 2С:2Т; 2С:1Т; 4С:2Т [21].

Использования режимов прерывистого освещения в технологии содержания несушек дает неоднозначные результаты. Так, использование режимов с чередованием 3С:3Т; 4С:4Т снизило яйценоскость птицы, а варианты 2С:2Т; 2С:4Т не оказали отрицательного влияния на продуктивность в сравнении с традиционными режимами освещения.

Нет сомнения, что почти все, приведенные прерывистые режимы способны сформировать циркадианные ритмы с определенными фазовыми соотношениями, потому как все они построены по принципу уже приводимых скелетных режимов, при которых ритмическая организация физиологических функций животного строится по тем же принципам, что и при обычных условиях освещения. Трудно определить продолжительность «дня» и «ночи», но их существование делает прерывистые режимы более предпочтительными в сравнении с круглосуточным освещением. При соотношении 1С:3Т продолжительность субъективного дня, разумеется, больше общей продолжительности освещения, которая в данном случае составляет 6 часов. Но, видимо, общей продолжительности освещения в указанных пределах не хватает для реализации жизненных функций бройлеров. Что подтверждается, в частности, довольно противоестественным фактом потребления цыплятами корма в темные периоды суток. Но сам факт регламентации пищевого поведения может иметь положительное значение. Опыт по изучению режимов кормления при круглосуточном освещении показал, что краткость доступа к корму 2:2; 4:2; 0,5:1; 3:1; 2:1; 1:3 в сравнении с круглосуточным, не снижает продуктивных показателей бройлеров.

При выращивании ремонтного молодняка яичных кур часто используют асимметричные световые режимы, содержащие в себе значительные периоды темноты. Например, 3С:2Т:3С:16Т или 3С:2Т:4С:15т. В первом случае эффективность прерывистого режима сравнивают с продолжительностью освещения 8 часов, во втором - 9. В принципе эти режимы (как в контрольных, так и в опытных условиях), с точки зрения формирования биологического ритма, почти идентичны, а достигнутый эффект, в частности, повышение сохранности, можно объяснить демонотонизирующим влиянием отключения света в течение субъективного дня. Это же относится и к менее определенному режиму 4Т:6С:5Т:2С:5Т:2С [32].

Использование таких режимов при выращивании бройлеров показало преимущество или круглосуточного (23С:1Т), или прерывистого (1С:2Т) в сравнении 12С: (1С:2Т) х4; 12С: (2Т:2С) х3, но в этом случае нетрудно заметить, что прерывистое освещение приходится на субъективную ночь, что могло оказать десинхронизирующее влияние на ритмическую организацию течения физиологических процессов в организме цыплят [19].

Представляют интерес режимы прерывистого освещения, используемые для выращивания курочек и содержания взрослой птицы, включающие периоды темноты примерно в середине субъективного дня. Например, для молодняка с соотношениями 4С:2 Т:4 С:14Т, для несушек 9С:2 Т:3 С:6Т; 8С:10 Т:2 С:4Т; 3С:2Т:3С:7Т:2,5С; 2С:4Т:8С:10Т. Подобные световые режимы позволяют увеличить жизнеспособность молодняка, повысить яйценоскость и прочность скорлупы [30]. Объяснение эффективности таких световых режимов заключается в том, что, как правило, уровень суточной активности поведенческих процессов в организме имеют характер, который может быть описан М-образной кривой. Такая кривая получила название кривой физиологической активности: периодика типа бигеминуса. Поэтому снижение освещенности или включение света в середине субъективного дня может иметь необходимые физиологические основания, а, следовательно, положительно сказаться на продуктивность птицы.

Широко исследуются в птицеводстве световые режимы с относительно короткими (менее 1 часа) периодами освещения. Результаты этих исследований неоднозначны. Так, при выращивании бройлеров световые программы с соотношением 40 мин C:80 мин Т; 15 мин С: 90 мин Т более эффективны в сравнении с круглосуточным, а использование таких соотношений как 3 мин С: 150 мин Т; 15 мин С: 165 мин Т; 5 мин С: 175 мин Т; 15 мин С: 105 мин Т; 15 мин С: 45 мин Т и 15 мин С:190 мин Т привело к результатам, не уступающим полученным при круглосуточном освещении.

Использование световых программ, имеющих периоды света и темноты меньшие по своим размерам, чем один час, могут положительно сказаться на сохранность ремонтного молодняка, что наблюдалось при соотношении 15 мин. С:45 мин. Т, но такой же режим может снизить яйценоскость или не оказать на продуктивность заметного влияния. В то же время режим 45 мин. С:15 мин. Т позволяет увеличить яйценоскость [33].

Такие короткие периоды освещения, используемые в течение суток, могут приводить к диссоциации активных фаз, как в поведении птицы, так и в осуществлении ее физиологических функций. При этом освещении в ночное время приводит к значительному снижению активности эпифиза, что позволяет сделать заключение о том, что такие режимы, в своем предикативном действии, могут быть практически круглосуточному режиму освещения.

Большое внимание исследователи уделяют выяснению влияния прерывистых режимов освещения с изменяющимися с временем соотношениями С:Т, что закономерно, так как именно такие режимы, через формирование циркадианных ритмов, могут влиять на изменение в характере той или иной фазы цирканнуального ритма. В принципе режимы прерывистого освещения могут быть по своему действию такими же, как и дифференцированные с обычными соотношениями С:Т, а значит оказывать предикативное (кодовое) воздействие на живой организм. Есть два способа влияния среды на динамику ритмических процессов в организме, разделяющиеся на регулирующее и модифицирующее действие. Если первое имеет существенное значение для работы механизмов, регулирующих ритмические процессы, то второе может и не иметь какой-либо позитивной ценности, если не несет в себе кодового значения, на которое система отвечает воспроизводимым кодом [34].

В бройлерном производстве формирование, изменяющихся со временем, световых режимов часто заключается в том, что первое время (1-2 недели) птицу содержат при круглосуточном освещении (23С:1Т), а затем используют световые программы с соотношениями 1С:2Т, 2С:2Т или 1С:3Т. Могут быть использованы несколько более сложные приемы формирования режимов после 1-2-недельного круглосуточного освещения, при которых с возрастом бройлеров увеличиваются размеры темных периодов от 1С:1Т до 1С:2Т - 1С:3Т или такие, как от 1С:3Т:1С:2Т:1С:1Т до 1С:2Т. Довольно подробные исследования таких режимов показало, что они могут и не оказывать положительного влияния на продуктивные показатели бройлеров, а в некоторых случаях круглосуточное освещение оказывается более эффективным. Для формирования репродуктивной функции кур также предлагаются как эффективные режимы прерывистого освещения с увеличением на 1 час в неделю.

В целом следует отметить, что прерывистое освещение, как правило, не снижает продуктивности птицы, и может быть успешно использовано при выращивании молодняка и содержании взрослой птицы [25].

Особого рассмотрения требуют изучаемые в птицеводстве световые режимы с размером периода, отличающегося от 24-часового, называемые агемеральными, у некоторых авторов они приведены, как ахемеральные.

Изучение продуктивности несушек в условиях 26-, 28- и 30-часовых субъективных суток, в сравнении с 24-часовыми, показало, что их удлинение приводит к снижению яйценоскости и увеличению массы яйца. Но можно и увеличить яйценоскость, если молодок содержать при режиме 6С:18Т, а затем увеличивать продолжительность фотопериода, при неизменной продолжительности периода темноты, или содержать молодок при 23-часовой продолжительности суток, а затем провести их увеличение, как и в первом случае, за счет времени освещения до 28 часов. Но, как правило, увеличение продолжительности субъективных суток до 28 или до 26 часов приводит к снижению яйценоскости, увеличению средней массы яиц и прочности скорлупы. Сокращение продолжительности суточного периода до 21 часа также снижало продуктивность. Видимо, в принципе, использование таких режимов возможно, так как несмотря на то, что в природе наблюдается только 24-часовая ритмика, период эндогенных циркадианных ритмов располагается примерно в пределах 20-28 часов. Так, при увеличении субъективных суток до 30 часов, не удалось получить положительные результаты. По-видимому, в этом случае эндогенные биологические ритмы живых организмов не могут быть захвачены внешними факторами изменений освещения, имеющими слишком большие размеры периода, и тогда механизм ритмической организации биологических процессов приобретает характер свободно текущего.

В связи с вышеизложенным, значительный теоретический и практический интерес представляли бы исследования возможности селекции сельскохозяйственной птицы на укорочение размеров эндогенного циркадианного ритма. Тем более, что повсеместное содержание птицы в условиях искусственного освещения этому не препятствует. А наличие изменчивости по этому показателю, и факт его наследования в соответствии с законами генетики, позволяли бы создать довольно однородную популяцию. О таких возможностях свидетельствуют результаты искусственного отбора мух дрозофил с измененным периодом биологических часов. При этом биологи продвинулись уже так далеко, что выделили, клонировали и картировали гены, контролирующие развитие циркадианных часов.

К несколько необычным приемам формирования световых режимов в птицеводстве можно отнести импульсное освещение. Оно может строиться или по принципу ассимметричных скелетных режимов, например, при 8-часовом освещении кур ночью (с 22 до 6 часов) и дополнительном в 13 часов 30 минут в течение 0,5-2 часов с освещенностью 200 лк; или подачей коротких, но более мощных сигналов (500, 770 лк) на фоне обычного режима - ночью [24], что позволяет увеличить продуктивные показатели кур. Такие режимы тоже могут нести функцию скелетных и ночные импульсы как бы продляют субъективный день, а возможно служат просто достаточно сильным сигналом для формирования ритма, в сравнении с довольно низкими условиями освещенности в птичниках.

Можно также высказать предположение, что импульсы в 400-770 лк привели вначале к повышению продуктивности, а по истечении времени к ее падению, потому что при постепенно удлиняющемся световом дне один из импульсов мог совпасть со временем сингулярности. Успех применения импульсного освещения в дневное время при выращивании бройлеров можно объяснить демонотонизирующим влиянием этого приема. Было отмечено, что при минимизации сенсорной информации возникает эффект десинхронизации внутрисуточной периодичности организма, что в конечном итоге приводит к затратам энергии на поддержание адекватного ритма [23]. Импульсы света с освещенностью 500 лк разнообразят монотонное, довольно слабое освещение в птичнике. Правда, нельзя отрицать, что эти же импульсы могут стать в указанных условиях освещения сигналом к синхронизации циркадианного ритма. Чем бы не объяснялся факт успешного применения импульсного освещения в дневное время, положительное его действие не вызывает сомнений.

Одним из факторов, формирующих световые режимы, является освещенность, которая должна находится в пределах, позволяющих птице ориентироваться в окружающем пространстве, и в то же время, не вызывающих стрессового воздействия на организм.

Для яичных кур ее уровни рекомендованы в пределах от 10 до 50-70 лк, для бройлеров в основном в первый период выращивания 20-25 лк, затем 5-6 лк, некоторые авторы рекомендуют снижать освещенность до 1-1,5 лк. Высокая интенсивность освещения приводит к снижению сохранности и живой массы бройле

Вывод
Явление структурности временной организации живых систем предполагает не только регулярность в характере изменений тех или иных показателей жизнедеятельности организма, но и определенную временную структуру самого биологического ритма.

Понимание времени, как фактора среды, позволило не только построить модель циркадианных изменений массы бройлеров, но и определить точки в функции развития процесса, где влияние времени снижается до минимального, или приобретает нулевое значение, а уровень действия факторов среды (в случае изменения в условиях освещения) значительно возрастает.

В связи с этим следует обратить внимание на то, что в исследованиях влияния световых режимов на циркадианные изменения массы бройлеров, адекватные ритмы, близкие к оптимальным, были получены тогда, когда скорость изменения освещения и его уровень в периоды потенциальной готовности были близки таковым, существующим в естественных условиях. Близкими к соотношению продолжительности дня и ночи сказались размеры альтернативных состояний биологического ритма. Это вполне объясняется тем, что миллионы лет эволюции живых организмов в периодически меняющихся условиях освещения не могли не привести к формированию наследственно закрепленных программ ритмического функционирования в биологических системах.

Таким образом, логическое разделение влияния световых режимов на предикативное и ультимативное, позволило определить основные методические подходы в исследованиях и получить результаты объясняющие целый ряд ранее необъяснимых фактов, таких как эффективность режимов прерывистого освещения, высокий уровень реакции птицы на, казалось бы, незначительные изменения в условиях освещенности и спектрах освещения.

Список литературы
Алякринский Б.С. Современное состояние космической биоритмологии / Космическая биология и авиакосмическая медицина, 1977 г. - №2.-С. 3-12.

Ашофф Ф. Экзогенные и эндогенные компоненты циркадных ритмов // Биологические часы. - М.: Мир, 1964.-С. 27-59.

Блум Д., Лейзерсон А., Хофстедтер Л. Мозг, разум, поведение. - М.: Мир, 1988. - 248 с.

Зелятров А.В. Основные пути повышения продуктивности бройлеров. - М.: ВНИИТЭИСХ. 1978. - 61 с.

Зонов М. Продолжительность и интенсивность освещения при выращивании и содержании племенных индеек, актуальные проблемы увеличения производства яиц и птичьего мяса в Сибири и на Дальнем Востоке. М.: Колос. - 1981. - №2.-С. 43-46.

Кручина С. Влияние светового режима на продуктивность цыплят-бройлеров. - Чита. - ЦНТИ. - 1991 -3 с.

Куосайнтс Б.А., Пабрежайте Р.Ю., Петрикас Ю.Ю., Римкунте Е.П., Савицкане Я.В., Цахаев Г.А., Швейстите К.И., Юркевич Я.В. Физиологические основы поведения домашних птиц. - Вильнюс: Мокелас, 1990.-147 с.

Ларионов В.Ф. Свет и повышение продуктивности сельскохозяйственных птиц. - М., 1956.-113 с.

Матюхин В.А., Демин Д.В., Евцихевич А.В. Биоритмология перемещений человека. - Новосибирск: Наука, 1976.-104 с.

Мымрин И.А. Технология производства мяса бройлеров. - М.: Колос, 1980.-269 с.

Пигарев Н.В. Свет в интенсивном птицеводстве. - М.: Колос, 1975.-57 с.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?