Логическое осмысление континуума. Расширение классической логики как следствие ее ограничения (переводы и погружения). Сущность и возникновение алгебры логики. Поиск логической системы. Пример логического анализа высказываний и построения их формул.
1 Логическое осмысление континуума 2. Расширение классической логики как следствие ее ограничения (переводы и погружения) 3 Алгебраизация логики 4 В поисках логической системы ЗАКЛЮЧЕНИЕ ПРАКТИЧЕСКАЯ ЧАСТЬ СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ Введение Два традиционных направления развития логики остаются пока непоколебимыми. IX Международном конгрессе по логике, методологии и философии науки Г. фон Вригт констатировал: “С логикой случилось то, что она расплавилась в разнообразных исследованиях математики…”. 1 Логическое осмысление континуума Одновременно с оформлением классической логики, с построением на её основе грандиозного здания “Principia Mathematica” и с появлением первых метатеорем для двузначной пропозициональной логики (непротиворечивость, дедуктивная полнота, функциональная полнота), - наряду со всем этим проявляется тенденция к критике самих оснований классической логики. Но тогда же К.Гёдель заметил, что существует счётное число логик между интуиционистской логикой H и классической C2, которые впоследствии получили название суперинтуиционистских логик (si-логики). Исходя из этого факта Т. В середине 60-х годов в результате критики “парадоксов” строгой импликации Льюиса (т. е. истина следует из чего угодно и из лжи следует всё, что угодно) оформляется релевантное направление в логике во главе с системой R; добавление к R “безобидной” аксиомы приводит к логике RM с весьма необычными свойствами.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы