Розробка ефективного чисельно-аналітичного методу для пошуку нових стаціонарних та рівномірно-обертальних симетричних та несиметричних конфігурацій систем точкових вихорів однакової інтенсивності в ідеальній нестисливій рідині на необмеженій площині.
При низкой оригинальности работы "Стаціонарні та рівномірно-обертові конфігурації точкових вихорів", Вы можете повысить уникальность этой работы до 80-100%
Автореферат дисертації на здобуття наукового ступеня кандидата фізико-математичних наукВ роботі представлено новий метод знаходження рівномірно-обертових конфігурацій систем точкових вихорів однакової інтенсивності. Метод базується на розвязанні нелінійної алгебраїчної системи рівнянь руху точкових вихорів. Класифіковано отримані вихрові структури на правильні, полігональні та розміщені по концентричних колах Проведено порівняльний аналіз з класами рівномірно-обертових конфігурацій точкових вихорів, наведеними в літературі. Наведено всі точні початкові координати вихорів в декартовій системі координат як для симетричних, так і для несиметричних рівномірно-обертових вихрових структур. Побудовано траєкторії руху всіх отриманих конфігурацій точкових вихорів без початкового збурення та з малим збуренням початкових координат.Задачі про пошук конфігурацій точкових вихорів, зокрема стаціонарних та рівномірно-обертових конфігурацій вихорів однакової інтенсивності, крім механіки рідини, мають важливе значення в області небесної механіки, фізики надтекучого гелію II. Пошук таких конфігурацій та аналіз їх стійкості потребує глибокого розуміння особливостей динаміки руху систем, що розглядаються, й суттєвого звуження діапазонів параметрів багатомірних систем, розробки нових алгоритмічних підходів чисельно-аналітичного розвязання задачі, що й обумовлює актуальність даної дисертації. провести класифікацію отриманих симетричних та несиметричних стаціонарних та рівномірно-обертових конфігурацій точкових вихорів однакової інтенсивності відповідно до даних, що містяться в сучасній літературі; Обєктом дослідження являються стаціонарні та рівномірно-обертові конфігурації точкових вихорів в ідеальній нестисливій рідині на необмеженій площині. Спираючись на основні закономірності динаміки точкових вихорів на необмеженій площині та на основні властивості рівнянь руху в гамільтоновій формі, було отримано наступні нові наукові результати: - представлено новий чисельно-аналітичний метод для пошуку рівномірно-обертових конфігурацій систем точкових вихорів однакової інтенсивності на необмеженій площині, який базується на аналізі стаціонарних точок поля швидкості в рівномірно-обертовій конфігурації системи з меншою кількістю вихорів;Вихорі розміщені на комплексній площині та мають координати, при відсутності зовнішнього потенціального потоку рівняння руху точкових вихорів на необмежені рідині. Якщо для даної конфігурації вихорів одночасно змінити знаки всіх інтенсивностей, то в усі наступні моменти часу система буде проходити через ті ж конфігурації, через які пройшла до цього моменту. Нехай в момент часу існує конфігурація, в якій всі вихорі колінеарні, тобто лежать на одній прямій. Якщо дві системи та складаються з однакової кількості вихорів, до того ж інтенсивність кожного вихору першої систем пропорційна множнику інтенсивності другої системи, то початкові положення обох конфігурацій подібні. Тоді наступна конфігурація другої системи через проміжок часу буде подібна до конфігурації першої системи через час.Основні результати дисертаційної роботи сформульовано у такий спосіб: 1) Представлено новий чисельно - аналітичний метод знаходження рівномірно-обертових конфігурацій систем точкових вихорів однакової інтенсивності в ідеальній невязкій рідині на необмеженій площині. Метод базується на розвязанні нелінійної алгебраїчної системи рівнянь руху точкових вихорів, де в якості початкового наближення вибрано стаціонарну конфігурацію порядку та стаціонарну точку потоку рідини в системі координат, що обертається з постійною кутовою швидкістю, рівною кутовій швидкості обертання вихрової системи порядку. Представлений метод дозволяє визначити як стійкі, так і нестійкі конфігурації рівномірно-обертових систем однакових точкових вихорів. В роботі класифіковано отримані вихрові структури та проведено порівняльний аналіз з класами рівномірно-обертових конфігурацій точкових вихорів, наведеними в літературі. Суттєвою відмінністю від знайдених в літературі рівномірно-обертових конфігурацій вихорів являється наведення точних (до десятого порядку малості) початкових координат в декартовій системі координат як для симетричних, так і для несиметричних вихрових структур.
План
2. Основний зміст роботи
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы