Пример группировки значений и построения эмпирической функции распределения и гистограммы. Пример восстановления интервалов, оценки с помощью критерия Пирсона хи-квадрата согласия данных с нормальным распределением. Пример нахождения выборочных регрессий.
Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный минерально-сырьевой университет «Горный» По дисциплине: «Теория вероятностей и математическая статистика» Тема: «Статистическая обработка ряда случайных чисел.По двум последним цифрам шифра студента (29) определяется вариационный ряд из двадцати значений (с шагом h=3) и соответствующие частоты (табл. Вводим интервалы группировки: Для сгруппированного вариационного ряда значения равны серединам интервалов: а частоты для этих значений получаем, складывая частоты значений xk, попавшие в соответствующий интервал ?i группировки, причем для значений xk, попавшего на границу на границу двух интервалов, частота mk, делится между этими интервалами поровну. Сгруппированный вариационный ряд задан серединами интервалов xi и соответствующими им частотами mi (таблица 2). Восстановить интервалы и оценить с помощью критерия Пирсона хи-квадрат согласие данных с нормальным распределением при уровне значимости где b - последняя цифра шифра.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы