Средние величины в экономическом анализе. Общее понятие о степенных и структурных средних. Свойства средней арифметической величины. Расчеты, необходимые для нахождения параметров регрессии. Линейный коэффициент корреляции. Определение медианы и моды.
В данной курсовой работе рассмотрена тема изучения метода средних величин. Метод средних величин свое применение находит при статистических исследованиях в любой сфере. В теоретическом разделе изучим виды средних величин, а именно: средняя арифметическая, гармоническая, геометрическая, квадратическая, кубическая, а также структурные средние величины - в экономическом анализе и условия их использования. Средние величины в экономическом анализе Как известно статистика исследует массовые социально-экономические явления. Любое из данных явлений может иметь разное количественное выражение одного какого-либо признака. Основное свойство средней величины состоит в том, что средняя величина представляет значение конкретного признака во всей совокупности 1-им числом, независимо от количественных различий его у отдельных единиц совокупности, а также выражает то общее, что всем единицам анализируемой совокупности присуще. Определяется качественная однородность совокупности за счет всестороннего теоретического анализа сущности какого-либо явления. К примеру, интегральным показателем доходов работающих акционерного общества (АО) служит средний доход одного рабочего, который определяется отношением суммарного фонда заработной платы и выплат социального характера за определенный период (год, квартал, месяц) к итоговой численности рабочих АО.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы