Способы оценки и снижения вычислительной сложности алгоритмов принятия решений в задачах одновременной локализации и картографирования - Статья

бесплатно 0
4.5 254
Краткая историческая справка ранних разработок и становления основных задач современных исследований SLAM. Два ключевых вычислительных решения проблемы SLAM с использованием расширенного фильтра Кальмана (EKF-SLAM) и фильтра Rао-Blackwellized (FastSLAM).

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Способы оценки и снижения вычислительной сложности алгоритмов принятия решений в задачах одновременной локализации и картографированияЦелью исследования является перспективная, быстро развивающаяся и востребованная область одновременная локализация и картографирование (Simultaneous Localization and Mapping далее SLAM). Основной принцип заключается в размещении мобильного робота в неизвестной среде, где он сможет постепенно выстроить последовательную карту этой местности при одновременном определении своего местоположения в пределах карты. В процессе построения мобильным роботом карты окружающей среды и одновременного ее использования, для определения своего местоположение, в режиме онлайн, одновременно оцениваются траектория платформы и расположение всех ориентиров без необходимости априорно заданных знаний о их расположении.Следовательно последовательное и полное решение комбинированной задачи локации и картографирования требует решения задачи нахождения связей между местоположениями каждого ориентира и мобильного робота, меняющихся при фиксации каждого наблюдения при движении. В свою очередь, это потребовало бы осуществить расчет огромного вектора состояний (порядка числа ориентиров, определенных на карте) со сложностью вычисления, как квадрат количества ориентиров. Учитывая высокую вычислительную сложность этих задач, исследования были сосредоточены на аппроксимации последовательного картографирования в условиях принудительной корреляции ориентиров, с применением полной фильтрации ориентиров, несвязанных с фильтрами мобильной платформы. zik - наблюдения полученные от транспортного средства по месту нахождения i-го ориентира в момент времени k. Обратимся к рис.1, из которого следует, что большая часть ошибок между предполагаемыми и истинными местоположениями ориентиров происходит фактически изза единственного источника: ошибок в параметрах о месте положении робота в момент наблюдения ориентиров.Авторы провели вычислительные эксперименты со SLAM моделями и установили, что снизить вычислительную сложность алгоритмов реализации можно за счет алгоритмов с использованием расширенного фильтра Кальмана (EKF-SLAM) и фильтра Rao-Blackwellized (FASTSLAM).

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?