Огляд проблеми подібності звичайних диференціальних операторів з індефінітною ваговою функцію до самоспряженого оператора. Дослідження спектральних властивостей мінімального симетричного оператора L0, пов’язаного з оператором струни М.Г. Крейна.
Аннотация к работе
Національна академія наук України Автореферат дисертації на здобуття наукового ступеня кандидата фізико-математичних наукДля сингулярних диференціальних операторів другого порядку з індефінітною вагою основну увагу приділено питанню подібності цих операторів до самоспряженого або нормального оператора. Наведено приклад ваги w такої, що оператор Lw має сингулярну критичну точку нуль і не є подібним до самоспряженого. Також побудовано невідємний оператор - d2/dx2 q такий, що оператор з індефінітною вагою (sgn x) ( - d2/dx2 q) не є подібним до самоспряженого. Отримано критерій подібності до самоспряженого або нормального оператора для операторів, що задаються в гільбертовому просторі L2(R, ) формальною диференціальною операцією Цей клас операторів досліджено за допомогою теорії розширень симетричних операторів, тобто проведено спектральний аналіз відповідного симетричного оператора L0, розширенням якого є оператор LS.Перші результати про спектр таких операторів було отримано Е. Проблеми подібності для операторів цього класу у просторі L2(|r(x)|dx) почали досліджувати у 70-х роках минулого сторіччя у звязку з деякими модельними задачами математичної фізики. За деяких додаткових умов, оператор L буде J-самоспряженим оператором. Нудельман довів, що оператор є максимальним антіакретивним, та за домогою теорії консервативних систем дослідив деякі спектральні властивості цього оператора. Робота виконувалась у межах держбюджетної наукової теми Г - 02.40 "Теорія функцій та операторів" (згідно з планом науково-дослідницьких робіт кафедри математичного аналізу та теорії функцій Донецького національного університету).Область визначення спряженого оператора L може не збігатися з dom(L), тому, як правило, оператор L не є самоспряженим. Якщо існують такі додатні сталі , що (1) а також (2) де то оператор Lw є подібним до самоспряженого в L2(R, w(x)dx). Теорема 1.1.4 . Нехай Т - оператор в H, що має дійсний спектр. Другий розділ присвячено дослідженню спектральних властивостей оператора Lw вигляду (5), який діє в гільбертовому просторі L2(R, w(x)dx). Оператор T називається J-самоспряженим, якщо оператор L :=JT є самоспряженим у гільбертовому просторі H.Доведено, що за умов оператор Lw - J-невідємний, дефінізовний та має дійсний спектр . В термінах m-функцій Вейля-Тітчмарша обчислено необхідні та достатні умови регулярності критичних точок 0 та оператора Lw. Це дозволило дослідити квазісамоспряжені розширення цього оператора - обчислити їх спектр, резольвенти, та отримати критерій подібності несамоспряжених розширень до самоспряженого (нормального) оператора. Для таких операторів обчислено критерій подібності до самоспряжного та нормального операторів в термінах коефіцієнтів З цього критерію випливає той факт, що ці оператори є подібними до нормального для майже всіх значень В свою чергу, оператор LS є квазісамоспряженим розширенням оператора L0, тому за певного вибору граничної трійки для оператора L0 отримано формулу для характеристичної функції оператора LS, яку було обчислено М.А. Нудельманом.