Система распознавания объектов в миллиметровом диапазоне радиоволн - Дипломная работа

бесплатно 0
4.5 126
Анализ физических предпосылок селекции движущихся малоразмерных наземных целей по спектральным параметрам. Разработка алгоритмов обнаружения МНЦ и повышения эффективности их распознавания в интересах радиолокационных станций разведки и целеуказания.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Актуальность работы. Определённые достижения в области распознавания классов автомобильной и гусеничной техники были получены в ряде НИИ бывшего СССР при разработке образцов станций разведки наземных движущихся целей. Однако, некоторые проблемы в области создания банка данных о признаках распознавания реальных целей, а также существенные ограничения на возможности реализации программного и алгоритмического обеспечения не позволили в 80-90-х годах решить эту задачу. Указанное приводит к необходимости продолжения исследований по синтезу и анализу алгоритмов обнаружения и предварительной классификации неподвижных целей (объекты искусственного или естественного происхождения, объекты автобронетанковой техники среди искусственных сооружений) и распознавания движущихся малоразмерных наземных целей (МНЦ). В отдельных работах отмечено, что перспективным направлением при решении проблемы селекции неподвижных целей является применение методов поляризационной селекции. Использование поляризационной обработки обеспечивает ряд преимуществ по сравнению с традиционными методами обработки сигналов, таких как: - возможность использования полной эффективной площади рассеяния (ЭПР) объекта, что особенно важно при селекции малоконтрастных целей; - применение тонкой поляризационной структуры отраженного сигнала при решении задач обнаружения МНЦ, укрытых растительностью; - возможность использования видов поляризации, отличных от линейной, для повышения РЛ контраста. Уместно отметить, что применение процедур классификации МНЦ поляриметрическими РЛС к настоящему времени практически не рассмотрены вследствие отсутствия возможности сравнительной оценки признаков распознавания для реальных целей. Широкий круг исследований, посвященных решению задачи распознавания классов целей по спектральным отличиям отражённых от них сигналов, не привёл к появлению алгоритмов, устойчивых к изменению условий РЛ наблюдения: ракурса, скорости, вида трассы. Отсутствуют эффективные алгоритмы повышения радиолокационного контраста МНЦ на фоне подстилающей поверхности. 3. Целью работы является повышение эффективности распознавания движущихся и поляризационной селекции неподвижных малоразмерных наземных целей в интересах радиолокационных станций разведки и целеуказания. Поставленная цель достигается решением следующих задач, составляющих основные этапы исследования: 1. АНАЛИЗ МЕТОДОВ И ПАРАМЕТРОВ ВОЗМОЖНЫХ ПРИЗНАКОВ КЛАССИФИКАЦИИ И ОБНАРУЖЕНИЯ НАЗЕМНЫХ ОБЪЕКТОВ 1.1 Формирование алфавитов классов (типов) целей для системы распознавания объектов Различаемые классы (типы) целей составляют определенный алфавит, подобный алфавиту букв русского (английского и т.п.) языка. Предварительное обнаружение по энергетическому параметру мере заметности цели ((L1)2 - максимум ЭПР цели для оптимальной поляризации) или комплексному параметру. Резонансные частоты подвески у тяжелых и легких гусеничных объектов составляют соответственно 1,1 и 1,4 Гц. Представив модель цели в виде совокупности блестящих точек (БТ), результирующий сигнал на входе антенны РЛС можно записать в виде: (1.3) где - коэффициент усиления антенны, - расстояние до центра масс (ЦМ) цели, - волновое число, - начальная фаза, - количество БТ цели, - несущая частота, - диаграмма обратного рассеяния по мощности -ой БТ, - разность хода волн от ЦМ до -й БТ. Проведем разбиение интервала регистрации [0,Т] на N подинтервалов, длиной T/N, что позволяет провести вычисление N значений функции Si( ) (1.12) где j = 1,..,N. Окончательная ошибка предсказания (ООП) (выбор порядка АР-процесса выбирается из требования минимизации средней дисперсии ошибки). 2.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?