Синус, косинус і тангенс гострого кута прямокутного трикутника - Конспект урока

бесплатно 0
4.5 116
Зміст означень синуса, косинуса, тангенса і котангенса гострого кута прямокутного трикутника та їх властивостей, що випливають із теореми Піфагора. Застосування співвідношень між катетом і гіпотенузою. Означення тригонометричних функцій гострого кута.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Синус, косинус і тангенс гострого кута прямокутного трикутникаМета: домогтися засвоєння учнями змісту означень синуса, косинуса, тангенса і котангенса гострого кута прямокутного трикутника та їх властивостей, що випливають із теореми Піфагора, подібності прямокутних трикутників та властивостей сторін прямокутного трикутника (проти більшої сторони лежить більший кут, і навпаки). Сформувати вміння відтворювати зміст означень та їх властивостей, а також знаходити значення тригонометричних функцій гострого кута за даними прямокутного трикутника. Якщо вдома учні виконували письмове завдання (аналіз розвязання задач контрольної роботи або корекційну роботу тощо), то правильність виконання цієї роботи вчитель перевіряє, зібравши зошити учнів на перевірку. Щоб сформулювати мету уроку, достатньо слів учителя про те, що в науці і техніці часто розвязують задачі, в яких за відомими стороною і кутом прямокутного трикутника треба знайти невідомі його сторони і кути, або навпаки, знаючи сторони прямокутного трикутник, обчислити його кути. З метою формування свідомого розуміння учнями змісту означень відношень між сторонами і кутами прямокутного трикутника та їх властивостей учні мають повторити зміст означення прямокутного трикутника та його елементів (поняття катета, що лежить проти даного гострого кута, та катета, що прилеглий доданого кута), ознак подібності прямокутних трикутників та властивості сторін подібних трикутників.Вивчення співвідношень між сторонами і кутами в прямокутному трикутнику традиційно розпочинається з уведення понять синуса, косинуса, тангенса і котангенса гострого кута прямокутного трикутника та формулювання і доведення їх властивостей (залежність числових значень тільки від міри кута). Проте, у звязку зі зміною послідовності вивчення матеріалу за новою програмою порівняно з попередньою, обґрунтування властивостей синуса, косинуса, тангенса і котангенса гострого кута прямокутного трикутника змінилося. Ця властивість - зростання синуса гострого кута за зростання кута і спадання косинуса гострого кута за зростання кута - на цьому етапі вивчення тригонометрії може бути сформульована у вигляді твердження: більшому гострому куту прямокутного трикутника відповідає більше значення синуса і менше значення косинуса. Потім до дошки вийшов інший учень і сказав, що накреслить прямокутний трикутник із катетами 45 см і 75 см, у якому синус, косинус, тангенс і котангенс гострого кута, протилежного до найменшого катета, будуть більшими, бо його трикутник більший. Після обговорення питань слід провести узагальнення способів застосування вивченого матеріалу, якщо треба знайти значення синуса, косинуса, тангенса і котангенса гострого кута прямокутного трикутника, то використовують означення цих понять; якщо ж треба відповісти на питання стосовно даних значень тригонометричних функцій, то слід використовувати їх властивості.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?