Історія виникнення чисел та їх понять. Розширення числового сприйняття в історичному аспекті та шкільному курсі математики. Аналіз підручників про розвиток світогляду чисельності. Дослідження відомостей про натуральні суми та їх дії в початкових класах.
КУРСОВА РОБОТА з методики навчання математики на тему: Розвиток поняття про число в ШКМПоняття про число належить до найбільш стародавніх теоретичних розділів математики. Теорія чисел в сучасному розумінні вивчає не тільки властивості цілих раціональних чисел, але й властивості чисел дійсних або комплексних, причому, для доведення своїх тверджень вона вживає аналітичні засоби, які належать іншим галузям математики, наприклад, математичному аналізу, теорії функцій комплексної змінної, алгебрі тощо. Крім того, в багатьох питаннях про числа мають велике значення геометричні міркування. Використовуючи при розвязуванні своїх задач, різні математичні дисципліни, теорія чисел відіграє велику роль у розвитку і вдосконаленні цих дисциплін.Вчені вважають, що історія виникнення чисел зародилася ще в доісторичні часи, коли людина навчилася рахувати предмети. Деякі клинописні знаки позначали числа 1, 10, 100, тобто були цифрами, інші числа записувалися за допомогою зєднання цих знаків. Користування цифрами полегшувало рахунок: рахували дні тижня, голови худоби, розміри земельних ділянок, обсяги врожаю. Судячи з цього історичного документу, єгиптяни користувалися такою системою цифр, в якій число позначалося сумою значень цифр. У цій системі значення цифри залежить від її положення в запису (так, в числі 151 цифра 1 ліворуч має значення 100, а праворуч - 1).Поняття числа, як і поняття множини, належить до числа основних фундаментальних понять сучасної математики. Число є основним знаряддям, за допомогою якого людина пізнає кількісні відношення реального світу. Тому є досить природним те, що сучасне вивчення про число базується на арифметиці саме натуральних чисел. Вивчення чисел у шкільному курсі математики відбувається у такій послідовності: натуральні числа, нуль, дробові числа (додатні), відємні числа і множина раціональних чисел, ірраціональні числа і множина дійсних чисел. Ця послідовність відображає історичний шлях розвитку поняття числа в математиці: і має назву історичної схеми розвитку поняття числа.За діючою програмою звичайні дроби в шкільному курсі математики вичають в три етапи: · Пропедевтично в 4 класі вивчають поняття дробу, чисельника, знаменника; навчають порівнювати дроби, знаходити дріб від числа і число за його дробом. Перш ніж розглядати питання про читання і записування багатоцифрових натуральних чисел, потрібно повторити з учнями поняття про розряди і розрядні одиниці, класи десяткової системи числення, співвідношення між розрядними одиницями, записування числа у вигляді суми розрядних одиниць, домогтися правильного вживання учнями слів «цифра» і «число». Повязано це з тим, що деякі учні недостатньо усвідомлюють принцип поділу чисел на класи і розряди, погано знають назви класів, починаючи від класу одиниць і до класу мільярдів і, навпаки, починаючи від класу мільярдів до класу одиниць. Відкладаючи на числовій прямій точки, що відповідають числам, формуємо усвідомлення того, що число має два значення: розташування відносно початку відліку і відстань від точки до початку відліку. Під час вивчення додавання та віднімання чисел за допомогою числової осі бажано сформувати в учнів розуміння того, що для будь-якого числа, число а 1 більше від а, оскільки розташоване праворуч від а; число а-1 менше від а, оскільки розташоване ліворуч від а.Розвиток поняття числа є важливою наскрізною змістовно-методичною лінією шкільного курсу математики, що проходить в тій чи іншій степені через всі класи середньої школи. Фундаментальність поняття числа у світі математики потребує вдосконалення методики вивчення числової змістової лінії шкільного курсу, знаходження нових засобів її узагальнення, особливо у школах математичного профілю. Одним із шляхів вдосконалення методики формування вмінь узагальнювати навчальний матеріал, а також: орієнтації на зближення шкільних математичних курсів з сучасною математичною наукою є ознайомлення учнів з основними поняттями сучасної математики які виконують у ній узагальнюючі функції.
План
Зміст
Вступ
1. Історія виникнення чисел та поняття числа
2. Розвиток і розширення поняття про число в історичному аспекті та ШКМ
3. Аналіз програми та шкільних підручників про розвиток поняття числа
4. Конспект уроку для 5 класу на тему «Ряд натуральних чисел»
Висновки
Список використаної літератури
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы