Решение задачи прикладного содержания с применением программирования на языке высокого уровня - Контрольная работа

бесплатно 0
4.5 176
Основные этапы определения радиуса и центра окружности, проходящей через три различные точки заданного множества точек. Особенности построения алгоритма на языке программирования. Составление тестовых примеров для демонстрации возможностей программы.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Цель работы - решение поставленной задачи: определить радиус и центр такой окружности, проходящей хотя бы через три различные точки заданного множества точек на плоскости, что минимальна разность количеств точек, лежащих внутри и вне окружности. Перебор для первой точки возможен только с 1 до n-2 (если n-2 точка является первой точкой набора, тогда n-1 - второй, а n - третьей), для второй точки перебор возможен со следующей координаты после выбранной в качестве первой до n-1, для третьей точки - со следующей координаты после выбранной в качестве после второй до n. В итоге мы найдем окружность построенную хотя бы по трем точкам с наименьшей разностью количеств точек внутри и вне окружности. Входные параметры: a: Point - координаты точки a; ok: Circle - координаты точки b; Значение функции: Accessory:INTEGER - принадлежность точки окружности( 1 - вне окружности,-1 - внутри окружности, 0 - лежит на окружности). В программе будем использовать следующие глобальные параметры: n, для хранения количества точек, i, j, k, l, для перебора всех возможных вариантов троек точек, k1, k2, difference, для подсчета количества точек внутри и вне окружности и разности между этими количествами, типа INTEGER; f, для связи физического файла, в котором хранятся координаты точке, с логическим файлом, f_answer, для связи с файлом, в который будет записан ответ, типа TEXT; xc, для чтения координат точек из файла, типа REAL; t, для хранения координат точек во время решения задачи, типа MASSP; c, для хранения параметров текущей окружности, ca, для хранения параметров искомой окружности, типа Circle.В процессе проведения исследования был проведен анализ условия поставленной задачи, выработан подход к ее решению, разработан алгоритм решения задачи и описан на языке программирования. Таким образом, была полностью решены задачи поставленные задачи исследования и достигнута его цель - разработана программа, позволяющая определить радиус и центр такой окружности, проходящей хотя бы через три различные точки заданного множества точек а плоскости, что минимальна разность количеств точек, лежащих внутри и вне окружности.Каталог Procedure and function Tests - содержит тестовые примеры процедур и функций встроенных в модуль программы. Файлы Kurs_Mod( с расширениями .o, .pas, .ppu) - файлы модуля, содержащего типы данных, значение переменной ? и функции, используемые в программе.

План
Содержание прилагаемого диска.

Введение
радиус окружность алгоритм программирование

Цель работы - решение поставленной задачи: определить радиус и центр такой окружности, проходящей хотя бы через три различные точки заданного множества точек на плоскости, что минимальна разность количеств точек, лежащих внутри и вне окружности.

Цель работы определила следующие задачи исследования: 1. Провести анализ условия задачи и выработать подход к ее решению.

2. Выбрать наиболее подходящие представления для входных, выходных и промежуточных данных.

3. На основе выбранного подхода разработать алгоритм.

4. Описать алгоритм на языке программирования.

5. Составить тестовые примеры для отладки и демонстрации возможностей программы.

1. Анализ условия задачи и выработка подхода к ее решению

По условию задачи исходными параметрами являются количество точек и их координаты в двумерном пространстве. В первую очередь необходимо организовать перебор троек точек из заданного множества. Порядок точек не важен, но чтобы сократить количество рассчитываемых наборов и не учитывать повторяющиеся наборы, упорядочим точки. Перебор для первой точки возможен только с 1 до n?2 (если n?2 точка является первой точкой набора, тогда n?1 - второй, а n - третьей), для второй точки перебор возможен со следующей координаты после выбранной в качестве первой до n?1, для третьей точки - со следующей координаты после выбранной в качестве после второй до n. Таким образом, мы сможем перебрать все возможные не повторяющиеся наборы из трех точек заданного множества.

Во время перебора точек мы по каждой тройке строим окружность и проверяем количество точек внутри и вне окружности. Принадлежность точки внутри и вне окружности проверяем с точностью ?. Во время проверки считаем количество точек внутри и вне окружности и находим разность этих количеств. Изначально разности присваиваем количество точек. Когда находится окружность с меньшей разностью, мы присваиваем наименьшей разности это значение и сохраняем координаты центра и радиус этой окружности. И так до конца перебора троек точек. В итоге мы найдем окружность построенную хотя бы по трем точкам с наименьшей разностью количеств точек внутри и вне окружности.

Окружность строим по следующему принципу: Проведем через пары точек две прямые. Первая линия пусть проходит через P1 и P2, а прямая b - через P2 и P3. Уравнения этих прямых будут:

;

где m - коэффициент наклона линии, получаемый из

;

Центр круга - находится на пересечении двух перпендикулярных прямых, проходящих через середины отрезков P1P2 и P2 P3. Легко доказать, что прямая, перпендикулярная к линии с коэффициентом наклона m имеет коэффициент наклона -1/m, значит уравнения прямых, перпендикулярных a и b и проходящих через середины P1P2 и P2P3 будут

Они пересекаются в центре, и решение относительно x дает

Значение у вычислим подстановкой x в уравнение одного из перпендикуляров. Радиус найти элементарно. Например, P1 лежит на окружности и мы знаем центр. Радиус будет равен длине ОР1. Знаменатель (mb - ma) равен нулю, когда прямые параллельны. В этом случае они совпадают, то есть круга не существует.

В конце организуем вывод параметром окружности и минимальную разность количеств точек.

2. Пошаговая разработка алгоритма

Программа создает и использует следующие типы данных: Point=Array[1..2] of REAL;

Points=ARRAY[1..100] of Point;

Circle=RECORD o:Point;

r:real;

END;

Алгоритм решения разделим на три основные части: ввод данных, решение задачи и вывод результата. Так же, в программе используем вспомогательные процедуры и функции.

Процедура Circles вычисляет параметры окружности проходящей через три точки. Входные параметры: t1: Point - координаты точки t1; t2: Point - координаты точки t2; t3: Point - координаты точки t3; Исходящие параметры: ok: Circle - параметры окружности.

PROCEDURE Circles(t1,t2,t3:Point; VAR ok: Circle);

VAR a,b,x,y,k0,k1,k2,m0,m1,m2:REAL;

BEGIN k0:=SQR(t1[1])-SQR(t2[1]) SQR(t1[2])-SQR(t2[2]);

k1:=2*(t1[2]-t2[2]);

k2:=2*(t1[1]-t2[1]);

m0:=SQR(t1[1])-SQR(t3[1]) SQR(t1[2])-SQR(t3[2]);

m1:=2*(t1[2]-t3[2]);

m2:=2*(t1[1]-t3[1]);

a:=k2*m0-k0*m2;

b:=k2*m1-k1*m2;

IF b=0 THEN EXIT;

y:=a/b;

ok.o[2]:=y;

IF abs(m2) > e THEN x:=(m0-y*m1)/m2

ELSE IF abs(k2) > e THEN x:=(k0-y*k1)/k2

ELSE EXIT;

ok.o[1]:=x;

ok.r:=sqrt(sqr(t1[1]-x) sqr(t1[2]-y));

END;

Функция Accessory определяет принадлежность точки окружности. Входные параметры: a: Point - координаты точки a; ok: Circle - координаты точки b; Значение функции: Accessory:INTEGER - принадлежность точки окружности( 1 - вне окружности, ?1 - внутри окружности, 0 - лежит на окружности).

FUNCTION Accessory(a:Point;ok:Circle):INTEGER;

BEGIN

IF (SQR(a[1]-ok.o[1]) SQR(a[2]-ok.o[2]))>SQR(ok.r) e

THEN Accessory:=1

ELSE

IF (SQR(a[1]-ok.o[1]) SQR(a[2]-ok.o[2]))<SQR(ok.r)-e

THEN Accessory:=-1

ELSE Accessory:=0;

END;

В программе будем использовать следующие глобальные параметры: n, для хранения количества точек, i, j, k, l, для перебора всех возможных вариантов троек точек, k1, k2, difference, для подсчета количества точек внутри и вне окружности и разности между этими количествами, типа INTEGER; f, для связи физического файла, в котором хранятся координаты точке, с логическим файлом, f_answer, для связи с файлом, в который будет записан ответ, типа TEXT; xc, для чтения координат точек из файла, типа REAL; t, для хранения координат точек во время решения задачи, типа MASSP; c, для хранения параметров текущей окружности, ca, для хранения параметров искомой окружности, типа Circle.

Заранее не известно, сколько будет задано точек, поэтому считаем все координаты из файла и запишем их количество в переменную n. Так как задача рассматривается на плоскости и у каждой точки две координаты, мы делим полученное значение на два. Затем записываем пары координат точек в массив, на экран и в файл. (С. 1)

Перебор троек точек осуществляется с помощью трех последовательных вложенных циклов FOR: FOR i:=1 TO n-2 DO

FOR j:=i 1 TO n-1 DO

FOR k:=j 1 TO n DO

BEGIN

END;

Во время перебора точек, мы строим окружность и подсчитываем разность количества точек внутри и вне нее. (С. 2)

Далее мы сравниваем это количество с наименьшим количеством. При нахождении окружности с меньшей разностью мы запоминаем эту разность и параметры окружности. И так до конца перебора. (С. 3)

И так до конца перебора точек. В итоге мы найдем окружность с наименьшей разностью количества точек внутри и вне нее.

Дальнейшей задачей является организация вывода полученных данных на экран, в текстовый файл и в виде графического изображения. Этот блок, для удобства, разбит на две части: 1. Вывод на экран и в текстовый файл; 2. Вывод графического изображения. Текстовый файл берем с именем answer.

В первом блоке выводимая информация зависит от значения параметра ca.r, отвечающего за радиус искомой окружности. При значении параметра равном нулю( что означает что окружность не найдена), на экран и в файл выводится сообщение о том, что по точкам множества невозможно построить окружность. (С. 4а, С. 4б)

При ненулевом значении параметра, на экран и в файл выводится информация о параметрах окружности и значение наименьшей разности. (С. 5)

По завершении вывода ответа, закрываем текстовый файл.

Во втором блоке мы используем дополнительные параметры для инициализации графического модуля и для перевода обычных координат в экранные: D, M, GRAPHERRORCODE, для инициализации модуля Graph и для проверки, не возникло ли ошибок при его инициализации, MX, MY, для хранения размеров экрана, xx, yy, для хранения координат, преобразованных в экранные, типа INTEGER; MAXX, MAXY, MINX, MINY, для хранения области значения точек множества, g, для вычисления масштабирующего параметра, типа REAL.

В первую очередь, найдем область определения множества точек, путем перебора всего множества точек и нахождения минимального и максимального значения по обеим координатам. (С. 6)

Далее, перенесем эту область в область экрана. Параметр g поможет промасштабировать эту область так, чтобы она не вылезала за рамки экрана, при этом не искажая графическое изображение. Этот параметр заключает область в рамку, с пустой сотней пикселей справа и снизу. Далее мы преобразуем координаты точек в экранные, со сдвигом на пятьдесят пикселей вправо и вниз, за счет чего получается, что графический ответ заключен в рамке, по пятьдесят пикселей со всех сторон. (С. 7)

Следующий шаг - вывод точек множества. Точки, для лучшей видимости, будем выводить размером пять на пять пикселей. (С. 8)

И, наконец, вывод ответа. Программа чертит окружность по параметрам полученной искомой окружности, с наименьшей разницей количества точек внутри и вне ее. (С. 9)

Перед завершением выполнения программы, закрываем графический модуль.

3. Тестовые примеры

Тесты основной программы

Пример 1. n = 6, координаты точек: (0,0), (0,1), (-1,0), (1,2), (3,0), (2,1) (Рис. 1а). Ответом являются параметры окружности и наименьшая разность. (Рис. 1б)

Пример 2. n = 5, координаты точек: (1,1), (2,2), (3,3), (4,4), (5,5) (Рис. 2а). Ответом является сообщение о том, что по точкам множества невозможно построить окружность. (Рис. 2б)

Пример 3. n = 3, координаты точек: (0,0), (1,0), (0,1) (Рис. 3а). В ответ выводится параметры единственной возможной окружности. (Рис. 3б)

Тесты функций

Функция Accessory(a:Point;ok:Circle):INTEGER; Функция Accessory определяет принадлежность точки окружности. Входные параметры: a: Point - координаты точки a; ok: Circle - координаты точки b; Значение функции: Accessory:INTEGER - принадлежность точки окружности( 1 - вне окружности, ?1 - внутри окружности, 0 - лежит на окружности). Тесты: 1) Входные параметры: a(1,1), o(0,0), r = 2; Значение функции: Accessory = -1;

2) Входные параметры: a(3,0), o(0,0), r = 2; Значение функции: Accessory = 1;

3) Входные параметры: a(2,0), o(0,0), r = 2; Значение функции: Accessory = 0;

Процедура Circles(t1,t2,t3:Point; VAR ok: Circle); Процедура Circles вычисляет параметры окружности проходящей через три точки. Входные параметры: t1: Point - координаты точки t1; t2: Point - координаты точки t2; t3: Point - координаты точки t3; Исходящие параметры: ok: Circle - параметры окружности. Тесты: 1) Входные параметры: t1(1,0), t2(0,1), t3(-1,0); Исходящие параметры: o(0,0), r = 1;

2) Входные параметры: t1(1,1), t2(2,2), t3(3,3); Исходящие параметры: o(0,0), r = 0.

Вывод
В процессе проведения исследования был проведен анализ условия поставленной задачи, выработан подход к ее решению, разработан алгоритм решения задачи и описан на языке программирования. Так же были составлены тестовые примеры для отладки и демонстрации возможностей программы. Таким образом, была полностью решены задачи поставленные задачи исследования и достигнута его цель - разработана программа, позволяющая определить радиус и центр такой окружности, проходящей хотя бы через три различные точки заданного множества точек а плоскости, что минимальна разность количеств точек, лежащих внутри и вне окружности.

Разработанная программа считывает координаты точек множества из файла, задаваемого пользователем, ответ выводится на экран и сохраняется в файле answer. В случае если по точкам заданного множества нельзя построить окружность, то программа выдаст сообщение о том, что по точкам множества невозможно построить окружность. Для корректной работы программы в файле, задающем множество точек их координаты должны быть записаны подряд через пробел.

Список литературы
1.Абрамян М. Э., Михалкович С. С. Основы программирования на языке Паскаль: Скалярные типы данных, управляющие операторы, процедуры и функции. - Ростов-на-Дону. - ООО «ЦВВР». - 2004.

2.Абрамян М. Э. Практикум по программированию на языке Паскаль: Массивы, строки, файлы, рекурсия, указатели. - Ростов-на-Дону. - ООО «ЦВВР». - 2004.

3.Выгодский М. Я. Справочник по высшей математике. - АСТ. Астрель. - 2006.

4.Ильин В. А., Позняк Э. Г. Аналитическая геометрия. - М.: ФИЗМАТЛИТ. - 2002.

Размещено на .ru

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?