Решение уравнений в начальной школе - Курсовая работа

бесплатно 0
4.5 66
Уравнения и способы их решения методом подбора переменных, на основе соотношения между частью и целым, зависимости между компонентами действий, знаний смысла умножения, приема с весами. Развитие познавательного интереса к математике в начальной школе.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Уравнения в школьном курсе математике занимают ведущее место. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Актуальность темы исследования: решение уравнений всегда было и до сих пор остается острой проблемой в методике математики, так как, несмотря на напряженные поиски и безусловные достижения в этой области, степень усвоения материала учащимися невысока. Цель работы: теоретически обосновать и проверить на практике эффективность использования в обучении младших школьников метода решения уравнений, основанного на повышении познавательного интереса к математике, связи математики с другими науками (на примере комплекса заданий для третьего класса).Если же рассматривать это выражение как запись того, что прибавление к любому числу числа 0 дает сумму, равную первоначальному числу, то утверждение не является уравнением. Следовательно, уравнение - это равенство двух выражений вместе с призывом найти его решение. Уравнение может иметь один корень, например, х=5.Все корни (решения) уравнения образуют множество корней. Термин “решение” употребляется в двух случаях: он обозначает так число (корень), при подготовке которого уравнение обращается в верное числовое равенство, так и сам процесс отыскания такого числа, т.е. способ решения уравнения. Выделяют следующие способы решения уравнений: способ, основанный на подборе значений переменной, способ, основанный на знании состава чисел, способы основанные на зависимостях между компонентами и результатами действий, графический способ, способы, основанные на разностном и кратном отношении чисел.Изучение уравнений начинается с подготовительного этапа уже в 1 классе, когда дети, выполняют задания, связанные с нахождением неизвестного числа в «окошке», например: Дети находят число либо подбором, либо на основе знаний состава числа. На протяжении нескольких уроков дети учатся решать уравнения с неизвестным слагаемым, уменьшаемым, вычитаемым. При изучении данной темы дети должны научиться находить в уравнениях компоненты, соответствующие целому (сумма, уменьшаемое), и компоненты, соответствующие его частям (слагаемое, уменьшаемое, разность). Решение таких уравнений строится на качественном анализе выражения, стоящего в левой части уравнения: какие действия указаны в выражении, какое действие выполняется последним, как читается запись этого выражения, какому компоненту этого действия принадлежит неизвестное число и т.п. Но так как дети уже с 1-го класса знакомы с записью различных алгоритмов, то можно использовать только алгоритм решения уравнений, по которому дети и анализируют уравнения.Мною были разработаны 3 урока по математике (приложение) в 3 классе на тему «Решение уравнений». Урок был организованным, дисциплина на уроке хорошая. На уроке присутствовали различные формы работы. В начале урока была проведена интересная разминка, что способствовало более быстрому включению детей в урок, повышению интереса к уроку. Для того чтобы у учащихся появился интерес к уроку, чтобы мобилизовать внимание всего класса, было прочитано стихотворение.В данной курсовой работе мы рассмотрели методику преподавания темы "Уравнения" в начальной школе. Способы решения уравнений: способ, основанный на подборе значений переменной, способ, основанный на знании состава чисел, способы основанные на зависимостях между компонентами и результатами действий, графический способ, способы, основанные на разностном и кратном отношении чисел. Большую трудность для младшего школьного возраста представляет умение решать уравнения. В начальной школе в процессе работы над уравнением закрепляются правила о взаимосвязи части и целого, сторон прямоугольника с его площадью, формируются вычислительные навыки и понимание связи между компонентами действий, закрепляется порядок действий и формируется умения решать текстовые задачи, идет работа над развитием правильной математической речи.Повторим: - Что такое уравнение? Что значит решить уравнение? Найдем неизвестное число, составив и решив простые уравнения: Рис. В какой строчке записано уравнение? Решите уравнение: х 3=81Цель урока: сформировать у учащихся навыки и умения работы с уравнениями при решении задач. Основные навыки и умения учащихся в области решения уравнений должны быть направлены на решение задач, в которых нет ни одного известного количественного параметра, но имеются данные о сумме этих компонентов. Задания формирует учитель: а) назовите какие числа в произведении дают 36 (36 и 1, 4 и 9, 6 и 6, 12 и 3); После таких примеров ученики переходят к решению уравнений на доске (2 ученика решают уравнения за закрытыми досками, а затем класс после сдачи своих работ, выполненных в домашних тетрадях, проверяет «по горячим следам» правильность решения, сверяя их с результатами на доске). При решении отвечаю

План
Оглавление

Введение

Глава 1. Теоретические основы обучения решению уравнений в начальной школе

1.1 Уравнения и их решения

1.2 Методика изучения уравнений в начальной школе

1.3 Способы развития познавательного интереса к математике

Вывод в 1 главе

Глава 2. Разработка и анализ уроков

2.1 Анализ проведенных уроков

Выводы по 2 главе

Заключение

Список использованных источников

Приложение

Введение
Уравнения в школьном курсе математике занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

Актуальность темы исследования: решение уравнений всегда было и до сих пор остается острой проблемой в методике математики, так как, несмотря на напряженные поиски и безусловные достижения в этой области, степень усвоения материала учащимися невысока. В период обучения в начальной школе формируются базовые знания, умения и навыки, на основе которых будет строиться дальнейшее изучение математики. Начальная школа занимает решающее место: проблема преемственности может не возникнуть только в случае, когда правильно организованно начальное обучение. Другими словами, на начальную школу возлагается высочайшая ответственность за все дальнейшее обучение математики. Вот почему так важно дать учащимся наиболее полную информацию о сущности уравнения и показать им пути его решения.

Цель работы: теоретически обосновать и проверить на практике эффективность использования в обучении младших школьников метода решения уравнений, основанного на повышении познавательного интереса к математике, связи математики с другими науками (на примере комплекса заданий для третьего класса).

Актуальность и цель исследования обусловили следующие задачи: 1. Изучить состояние проблемы, опираясь на литературные источники и школьную практику;

2. Изучить особенности обучения решению уравнений младшими школьниками;

3. Разработать комплекс уроков по математике в начальной школе по теме «Уравнения. Решение уравнений», проверить эффективность проведенных уроков. Для решения поставленных задач использовались следующие методы исследования: изучение психолого-педагогической, методической литературы по проблеме исследования, программ, учебников, методических пособий по математике для начальной и средней школы; обобщение опыта работы учителей начальных классов.

Практическая значимость результатов исследования: Научно-практическая значимость работы определяется тем, что теоретические положения, конкретный материал, конспекты уроков, предложенные упражнения, выводы проведенного исследования могут быть использованы учителями начальных классов, учителями математики. уравнение математика умножение

Вывод
В данной курсовой работе мы рассмотрели методику преподавания темы "Уравнения" в начальной школе.

Уравнение - это самая простая и самая распространенная форма математической задачи. Возьмем два числовых выражения и поставим между ними знак равенства. Мы получим числовое равенство. Оно будет верным или неверным в зависимости от того, равны или не равны значения взятых числовых выражений.

Решить уравнение - это значит найти все его корни или убедиться, что корней нет.

Способы решения уравнений: способ, основанный на подборе значений переменной, способ, основанный на знании состава чисел, способы основанные на зависимостях между компонентами и результатами действий, графический способ, способы, основанные на разностном и кратном отношении чисел.

Большую трудность для младшего школьного возраста представляет умение решать уравнения. Изучение уравнений в начальной школе носит пропедевтический характер. Поэтому очень важно подготовить детей в начальной школе к более глубокому изучению уравнений в старших классах. В начальной школе в процессе работы над уравнением закрепляются правила о взаимосвязи части и целого, сторон прямоугольника с его площадью, формируются вычислительные навыки и понимание связи между компонентами действий, закрепляется порядок действий и формируется умения решать текстовые задачи, идет работа над развитием правильной математической речи. На уроках закрепления уравнения позволяют разнообразить виды заданий.

Это свидетельствует о том, что применение связи математики с другими науками (историей, географией, обществоведением и др.) повышает познавательную активность учащихся на уроках математики и способствует хорошему усвоению учебного материала.

В разработанных нами уроках просматривается различные виды уравнений, их практическое применение.

Список литературы
1. Башмаков М.И. Уравнения и неравенства. М., 2006.

2. Гончарова М.А. и др. Учись размышлять: развитие математических представлений у детей. М.: Антал, 1999.

3. Ивашова О.А. Ошибки в порядке выполнения действий и пути их предупреждения // Начальная школа. 1998. - №4.

4. Истомина Н.Б., Шмырева Г.В. Методика работы над уравнениями // Начальная школа. 2003. - №3.

5. Истомина Н. Б. Активизация учащихся на уроках математики в начальных классах: Пособие для учителя.- М.: Просвещение, 2005.- 64 с., ил.

6. Истомина Н.Б. Методика обучения математике в начальных классах: Учеб. пособие для студ. сред. и высш. пед. учеб. заведений. 3-е изд., стереотип. М.: Издательский центр Академия, 2000. 288 c.

7. Материалы сайта8. Популярная энциклопедия для детей. Все обо всем. Т.6.- М.: «Ключ - «С», 1995. С.26.

9. Стойлова Л.П. Математика: Учебное пособие. М.: Академия, 1997.

10. Чабатарэуская Т.М., Дрозд У.Л., Столяр А.А. Математика. 3 класс. В 2-х частях. - Народная асвета, 2007.

11. Чеботаревская Т.М., Дрозд В.Л. Математика. 4 класс. В 2-х частях. - Народная асвета, 2008.

12. Канашевич Т.Н. Путешествие в страну занимательной математики. Рабочая тетрадь. III класс. Пособие для учащихся. - Аверсэв, 2011, 2012.

13. Канашевич Т.Н. Путешествие в страну занимательной математики. Рабочая тетрадь. IV класс. Пособие для учащихся. - Аверсэв, 2011, 2012.

14. Канашевич Т.Н. Путешествие в страну занимательной математики. III-IV классы. Пособие для учителя. - Аверсэв, 2010, 2012;

15. Методика работы над уравнениями в начальной школе. О. А. Коростелева// Начальная школа, №6 2008

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?