Развитие логического мышления на уроках математики при решении текстовых задач в 6 классе - Дипломная работа

бесплатно 0
4.5 165
Понятие мышления в педагогической литературе, его классификация. Методика работы над текстовыми задачами, этапы и способы их решения. Опытно-экспериментальная работа учителя по развитию логического мышления на уроках математики и рекомендации к ней.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
В наше время очень часто успех человека зависит от его способности четко мыслить, логически рассуждать и ясно излагать свои мысли. Перед учителем математики стоит задача - не просто давать знания, предусмотренные программой, а способствовать формированию высокого уровня логической культуры учащихся. Задачи, которые кажутся на первый взгляд простыми, могут потребовать остроумия, смекалки при ее решении. Сначала и до конца обучения в школе математическая задача неизменно помогает ученику вырабатывать правильные математические понятия, глубже выяснять различные стороны взаимосвязей в окружающей его жизни, дает возможность применять изучаемые теоретические положения. Математику любят в основном те ученики, которые умеют решать задачи.Сущность его в отражении: 1) общих и существенных свойств предметов и явлений, в том числе и таких свойств, которые не воспринимаются непосредственно; Мышление расширяет границы познания, дает возможность выйти за пределы непосредственного опыта ощущений и восприятия. Мышление дает возможность знать и судить о том, что человек непосредственно не наблюдает, не воспринимает. Мышление перерабатывает информацию, которая содержится в окружениях и восприятии, а результаты мысленной работы проверяются, и применяются на практике. Мыслительная деятельность людей совершается при помощи мыслительных операций: сравнения, анализа и синтеза, абстракции, обобщения и конкретизации [20, с 115].Задачи, которые решаются в одно действие называются простыми задачи, решающиеся в два и более - составные [30, с 27]. Учитель должен четко подбирать задачи с понятным содержанием, вырабатывать у детей тактику и последовательность работы над задачей [21, с 35]. Поэтому, приступая к решению какой-либо задачи, надо ее внимательно изучить, установить, в чем состоят ее требования, каковы условия, исходя из которых надо решать задачу. Под процессом решения задачи понимается процесс, начинающийся с момента получения задачи до момента полного завершения ее решения, то, очевидно, что этот процесс состоит не только из изложения уже найденного решения, а из ряда этапов, одним из которых и является изложение решения. При решении многих задач, кроме проверки, необходимо еще раз произвести исследование задачи, а именно установить, при каких условиях задача имеет решение и притом, сколько различных решений в каждом отдельном случае; при каких условиях задача вообще не имеет решения и т.д.Опытно-экспериментальное исследование по выявлению уровня развития логического мышления школьников при решении текстовых задач проводилось на базе МОУ «Средняя общеобразовательная школа № 10» г. В содержании опытно-экспериментального исследования выделяются три этапа: констатирующий, формирующий и контрольный, содержание каждого из которых отвечает основным задачам экспериментального исследования: 1) изучению уровня сформированности основных мыслительных операций у шестиклассников контрольного и экспериментального классов на начало эксперимента; Таким образом, результаты констатирующего эксперимента свидетельствуют, что сложившаяся в школе система преподавания математики не акцентирована на развитии логического мышления школьников, она позволяет формировать у большинства из них только средний уровень освоения основных логических операций. Формирующий эксперимент проводился в 6 «Г» классе средней общеобразовательной школы № 10.Особое внимание в ходе данного этапа экспериментальной работы уделялось реализации первого, как мы считаем, базового педагогического условия - наличия у педагогов, работающих со школьниками, устойчивой направленности на развитие логического мышления учащихся. В течение 5-8 минут проводился устный счет, в который включались задания на логическое мышление, это было последовательное выполнение действий, решение устных текстовых задач.Версия, что текстовые задачи способствуют развитию логического мышления, нашла свое подтверждение.Решение математических задач требует применения многочисленных мыслительных умений: анализировать заданную ситуацию, сопоставлять данные и искомые, решаемую задачу с решенными ранее, выявляя скрытые свойства заданной ситуации; конструировать простейшие математические модели, осуществляя мысленный эксперимент; синтезировать, отбирая полезную для решения задачи информацию, систематизируя ее; кратко и четко, в виде текста, символически, графически и т. д. оформлять свои мысли; объективно оценивать полученные при решении задачи результаты, обобщать или специализировать результаты решения задачи, исследовать особые проявления заданной ситуации. Поэтому при обучении решению задач необходимо специально анализировать с учащимися связь и отношения элементов задачи. Выделяют следующие виды задач: задачи, рассчитанные на воспроизведение (при их решении опираются на память и внимание); задачи, решение которых приводит к новой, неизвестной до этого мысли, идее; творческие задачи. Задачи и упражнения с выполнением некоторых исследований могут найти свое место во всех разделах школьного курса математики. б) Зад

План
Оглавление

Введение

Глава 1. Теоретические основы развития логического мышления в процессе решения текстовых задач

1.1 Понятие «мышление» в психолого-педагогической литературе

1.2 Методика работы над текстовыми задачами

Глава 2. Работа учителя по развитию логического мышления на уроках математики

2.1 Опытно-экспериментальная работа и анализ ее результатов

2.2 Методические рекомендации к работе учителя по развитию логического мышления при решении текстовых задач

Заключение

Литература

Приложение

Введение
В наше время очень часто успех человека зависит от его способности четко мыслить, логически рассуждать и ясно излагать свои мысли. Именно поэтому развитие мышления является основной задачей школьного курса обучения. Перед учителем математики стоит задача - не просто давать знания, предусмотренные программой, а способствовать формированию высокого уровня логической культуры учащихся. При этом математика имеет огромные возможности для реализации этой цели.

Но сейчас математика необходима не только как вспомогательное орудие. Ломоносов говорил: "Математику уже, зачем учить следует, что она ум в порядок приводит, она - школа мышления".

Школьная математика - основа всей математики. Чтобы изучение шло успешно, необходимо усвоить азы. Для этого необходимо, прежде всего, научить решать задачи, особенно логические. Задачи, которые кажутся на первый взгляд простыми, могут потребовать остроумия, смекалки при ее решении.

Ребенок с первых дней занятий в школе встречается с задачей. Сначала и до конца обучения в школе математическая задача неизменно помогает ученику вырабатывать правильные математические понятия, глубже выяснять различные стороны взаимосвязей в окружающей его жизни, дает возможность применять изучаемые теоретические положения. В тоже время решение задач способствует развитию логического мышления.

Решение задач занимает в математическом образовании огромное место. Умение решать задачи является одним из основных показателей уровня математического развития, глубины освоения учебного материала.

Математику любят в основном те ученики, которые умеют решать задачи. Следовательно, научив детей владеть умением решать задачи, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Цель же уроков по логике не заучивание правил, а развитие способностей умения рассуждать и делать правильные выводы.

Только решение трудной, нестандартной задачи приносит радость победы. При решении логических задач ученикам предоставляется возможность подумать над необычным условием, рассуждать. Это вызывает и сохраняет интерес к математике. Обдумывание задачи и попытка рассуждать, конструировать логически обоснованное решение - лучший способ раскрытия творческих способностей учеников.

Очень важно уже с раннего возраста учить ребят мыслить логически, то есть мыслить последовательно, связно. Прежде всего, это важно для их дальнейшего успешного обучения.

Включение элементов логики в обучение математике способствует естественному расширению математических идей, методов и языка на новые логические объекты.

Объект исследования: процесс обучения математике в 6 классе.

Предмет исследования: педагогические условия развития логического мышления школьников на уроках математики в процессе решения текстовых задач.

Цель - выявление влияния решения текстовых задач на развитие логического мышления.

Задачи: - анализ учебно-методической и психолого-педагогической литературы по данной теме;

- разработка и проведение уроков по решению текстовых задач;

- проведение диагностики на выявление уровня логического мышления.

Гипотеза: если в образовательном процессе систематически использовать текстовые задачи, то это будет способствовать развитию логического мышления учащихся 6 класса.

Контингент: учащиеся 6 класса.

Вывод
Высокий уровень Средний уровень Низкий уровень

6 «В» ^ на 4,1% v на 4,8% ^ на 0,7%

6 «Г» ^ на 33,3% v на 15% v на 18,3%

Данные позволяют признать проведение экспериментального исследования успешным. Версия, что текстовые задачи способствуют развитию логического мышления, нашла свое подтверждение. Работу по решению текстовых задач необходимо целенаправленно продолжать внедрять, чтобы достичь устойчивых результатов.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?