Разработка устройства логического управления - Курсовая работа

бесплатно 0
4.5 85
Электронный автомат с заданными входными сигналами и контролируемыми параметрами. Структурный синтез управляющего автомата. Направленный граф абстрактного автомата. Кодирование внутренних состояний и выбор типа памяти. Выбор элементов и микросхем.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Такой контроль был бы невозможен без применения современной электронной техники и автоматики вследствие того, что существуют многочисленные физические явления недоступные для простого визуального контроля. В настоящее время промышленная автоматика развивается значительными темпами, что связано с постоянно повышающимся уровнем сложности и качества технологических процессов. Электронные промышленные устройства являются сложными системами, в состав которых входят энергетические преобразователи, элементы электропривода, микропроцессорные узлы обработки информации и связи с внешними управляющими объектами, а также датчики различного назначения, устройства согласования с объектом управления.При проектировании устройства логического управления будем ориентироваться на синхронный дискретный автомат Мура, поскольку для асинхронного дискретного автомата опасен эффект состязания ("гонок"). Для исключения эффекта "гонок" нужно применять соседнее кодирование логических переменных всех состояний автомата, чтобы переход в следующее состояние отличался от предыдущего только одним разрядом. В данном случае это проблематично, т.к каждое состояние автомата по заданию содержит три разряда и существует возможность перехода из заданного состояния в одно из двух состояний в зависимости от выполнения или невыполнения определенного условия.В данном случае минимизация не требуется, так как исходный алгоритм не содержит повторяющихся состояний.Поскольку автомат имеет шесть внутренних состояний, потребуется использовать трехразрядный код и соответственно три ячейки памяти. Это следует из формулы: n= [целая часть (log2N)] 1,где N - число внутренних состояний автомата; n - количество ячеек памяти.Упростив выражения, применяя алгебру логики, получим: Теоретически возможны дальнейшие преобразования приведенных выражений и их минимизация в еще большей степени, но в данном случае минимизация производилась с учетом использования мультиплексоров при реализации автомата с целью снизить количество корпусов микросхем.Составим таблицу переходов (таблица 1): Таблица 1С учетом промышленного назначения проектируемого автомата целесообразно использовать ТТЛ-логику (для простоты коммутации - так как часть входных сигналов задается уровнем ТТЛ (b1) при напряжении питания 12 В.Рис.2.3 Схема управляющего автомата при моделированииПодставляя на соответствующие входы значения проверяем правильность составления модели:

1) F1F2

2) F1 B1

3) F1F2

4) F1 B1

5)

6) B1 F2

7) B1

8) B1 F2

9) F1F2 B13.1 Электродвигатель ДПР-72-Н1-03 Основные характеристики электродвигателя отражены в таблице 2: Таблица 2 Наименование Электродвигатель постоянного тока коллекторный Род тока Трехфазный - 50; 60 Гц Потребляемый ток в номинальном режиме 1,25А Начальный пусковой момент, МН*м 245Общие сведения о данных транзисторах занесены в таблицу (таблица 3): Таблица 3 Тип транзистора КП812А: КП - транзистор полевой; 812 - номер серии; Макс. ток сток-исток, А 50Датчик давления выбираем из условия, что измерения будут производиться в диапазоне 0,1…1МПА. Датчик давления состоит из кремниевого мембранного чувствительного элемента, на котором сформирована п/п мостовая резистивная структура так, что одно из плеч моста находится в зоне наибольшей деформации мембраны. Сигнал разбаланса моста, который пропорционален приложенному давлению, поступает или на внешние выводы или на схему обработки и нормализации. Корпус выполнен из коррозионно стойкого металла с двойной нержавеющей мембраной для агрессивных сред. Датчик на агрессивные среды имеет самоуплотняющуюся резьбу для подключения к магистрали.В качестве таймера будем использовать микросхему КР1006ВИ1 с напряжением питания 12 В.Данная микросхема удобна тем, что на выходе мы получаем стандартный сигнал ТТЛ логики и простотой управления частотой. Каждый генератор имеет два входа для управления частотой: U - управление частотой, DU - управление диапазоном частоты. Если на вход U подан высокий уровень, а на DU низкий, то для фиксации частоты следует подсоединить между входами Свн внешний элемент - конденсатор или кварцевый резонатор.Устройство представляет собой RC - цепь, формирующую при включении низкий потенциал на входе сброса D - триггеров, для принудительного установления начального состояния. Схема устройства приведена ниже: Рис.4.3 Устройство начального сброса. , , Резистор и конденсатор выбираем из стандартного ряда Е48 или Е96 для обеспечения допустимого класса точности. Схема реализации Uоп представлена на рис 4.5 Схема реализации функции представлена на рис 4.4Для реализации логического сигнала B1 мы должны преобразовать контактные сигналы в логический. В качестве оптопары будем использовать оптопару TLP521-1 со следующими параметрами: Коэффициент передачи по току, при токе 10МА,% 600Для реализации опорного напряжения будем использовать источники тока REF200 и сопротивления для получения соответствующего напряжения. Опорное напряжение для нормирующего устройства датчика составляе

План
Содержание

1. Введение

2. Структурный синтез управляющего автомата

2.1 Построение направленного графа абстрактного автомата

2.2 Минимизация абстрактного автомата

2.3 Кодирование внутренних состояний и выбор типа памяти

2.4 Определение логических функций возбуждения памяти

2.5 Составление таблицы переходов

2.6 Выбор элементов и микросхем

2.7 Составление модели в ORCAD на основе полученных упрощенных выражений

2.8 Результаты моделирования схемы автомата

3. Выбор аналоговых элементов

3.1 Электродвигатель ДПР-72-Н1-03

3.2 Транзисторы VT1,VT2 -КП812А 3.3 Датчик давления

4. Выбор схем, реализующих заданные передаточные функции, вспомогательные функции и реализация коммутаций устройств со схемой автомата Мура

4.1 Таймер

4.2 Тактовый генератор

4.3 Устройство начального пуска

4.4 Устройство реализации функции F1

4.5 Устройство, реализующее функцию F2

4.6 Подключение контактного сигнала

4.7 Устройства опорного напряжения

4.8 Устройство индикации

4.9 Устройства сопряжения

5. Список литературы

Введение
Современное промышленное производство является сложным комплексным процессом, который требует быстрого и многомерного контроля за всеми параметрами. Такой контроль был бы невозможен без применения современной электронной техники и автоматики вследствие того, что существуют многочисленные физические явления недоступные для простого визуального контроля. В настоящее время промышленная автоматика развивается значительными темпами, что связано с постоянно повышающимся уровнем сложности и качества технологических процессов. Электронные промышленные устройства являются сложными системами, в состав которых входят энергетические преобразователи, элементы электропривода, микропроцессорные узлы обработки информации и связи с внешними управляющими объектами, а также датчики различного назначения, устройства согласования с объектом управления. Очевидно, что задача разработки промышленного автомата включает в себя комплекс проблем, которые сами по себе представляют отдельную область современной электроники. Важно обеспечить высокую надежность и защиту от сбоев, поскольку существуют технологические процессы, нарушение которых может привести к катастрофическим последствиям опасным для жизни людей и окружающей среды. Поэтому создание таких устройств требует от разработчика хороших знаний в области электроники и в области технологических процессов, для управления которыми создается промышленный автомат.

Целью данного курсового проекта является разработка электронного автомата при заданных входных сигналах и контролируемых параметрах, а также исполнительных устройствах. Курсовой проект предусматривает решение основных задач реального инженерного проектирования электронной техники: структурный синтез, разработку принципиальной схемы, моделирование основных функциональных узлов, конструирование. Функционирование автомата производится по приведенному в задании алгоритму.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?