Решение биквадратного уравнения методом введения новой переменной. Создание программы с понятным интерфейсом. Математические и алгоритмические основы решения задачи. Алгебраическое уравнение четвертой степени. Программная реализация решения задачи.
При низкой оригинальности работы "Разработка программного обеспечения для нахождения корней биквадратного уравнения", Вы можете повысить уникальность этой работы до 80-100%
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами. Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами.Биквадратное уравнение решается методом введения новой переменной: положив x2 = y, придем к квадратному уравнению ay2 by c=0. Требуется разработать программное обеспечение для нахождения корней биквадратного уравнения. Решить уравнение x4 4x2-21=0. Решение: Положив x2 = y, получим квадратное уравнение y2 4y-21=0, откуда находим y1=-7, y2=3. Первое уравнение не имеет действительных корней, из второго находимТаким образом, для решения биквадратного уравнения необходимо помнить, что оно свелось к системе двух уравнений второй степени: y = x2 ay2 by c = 0. Получим три возможных варианта решений: дискриминант отрицателен: уравнение не имеет действительных решений; дискриминант не отрицателен и равен нулю: уравнение имеет один двукратный корень; дискриминант не отрицателен и равен нулю: уравнение имеет два различных корня. В первом случае, когда дискриминант квадратного уравнения отрицателен, система не имеет решения, так как одно из входящих в нее уравнений, а именно квадратное уравнение ay2 by c = 0, не имеет решения.#include #include #include #include #include "HANDTUNING.h"Рисунок 1 - Решение биквадратного уравнения Рисунок 2 - Решение биквадратного уравнения Рисунок 3 - Решение биквадратного уравнения Рисунок 4 - Решение биквадратного уравненияВ рамках данной курсовой работы была поставлена задача: построить алгоритм и реализовать программный продукт для нахождения корней биквадратного уравнения. В результате проектирования был составлен принципиальный алгоритм для решения поставленной задачи.
План
Содержание
Введение
1 Постановка задачи
2 Математические и алгоритмические основы решения задачи
3 Программная реализация решения задачи
4 Пример выполнения программы
Заключение
Список использованных источников и литературы
Введение
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. "Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37...", - поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами. Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) - собрание задач на составление уравнений с систематическим изложением их решений. Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата - "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") - со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений. Алгебраическое уравнение четвертой степени.
, где a, b, c - некоторые действительные числа, называется биквадратным уравнением. Заменой уравнение сводится к квадратному уравнению с последующим решением двух двучленных уравнений и ( и - корни соответствующего квадратного уравнения).
Если и , то биквадратное уравнение имеет четыре действительных корня: , .
Если , то биквадратное уравнение имеет два действительных корня и мнимых сопряженных корня: .
Если и , то биквадратное уравнение имеет четыре чисто мнимых попарно сопряженных корня: Случай , аналогичен разобранному.
,
Целью данной курсовой работы является разработка программного обеспечения для нахождения корней биквадратного уравнения.
Вывод
В рамках данной курсовой работы была поставлена задача: построить алгоритм и реализовать программный продукт для нахождения корней биквадратного уравнения.
В результате проектирования был составлен принципиальный алгоритм для решения поставленной задачи. Далее он был детализован и реализован на ЭВМ. В конце, был проведен анализ полученных результатов, и сделаны необходимые выводы.
Программный продукт был реализован в среде визуального программирования CODEGEAR RADSTUDIO 2009 под ОС типа Windows для IBM PC-совместимых компьютеров.
Созданный программный продукт позволяет решить поставленную задачу. Также можно указать о том, что программа имеет интуитивно понятный интерфейс, что дополнительно помогает пользователю с наибольшей результативностью использовать программу.
В заключение после анализа полученных результатов были сделаны выводы, согласно которым алгоритм работает и применим для поставленной задачи.
Список литературы
1. Архангельский, А.Я. Программирование в С Builder 6. [Текст] / А.Я.Архангельский. - М.: Бином, 2003. С. 1154.
2. Ахо, А.. Построение и анализ вычислительных алгоритмов [Электронный ресурс] / А. Ахо, Дж. Хопкрофт, Дж.. Ульман. - М.: Мир. 1999. С. 143.
3. Бронштейн, И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н. Бронштейн, К.А. Семендяев. - М.: Наука, 2007. - 708 с.
4. Кремер, Н.Ш. Высшая математика для экономистов: учебник для студентов вузов. [Текст] / Н.Ш.Кремер, 3-е издание - М.:ЮНИТИ-ДАНА, 2006. C. 412.
5. Калиткин, Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. - М.: Питер, 2001. С. 504.
6. Биквадратные уравнения [Электронный ресурс] - Режим доступа: http://fio.ifmo.ru/archive/group34/c4wu2/pege3-2.htm
7. Павловская, Т.А. Программирование на языке высокого уровня. [Текст] / Т.А. Павловская. - М.: Питер, 2003. С. 461.
8. Семакин, И.Г. Основы программирования. [Текст] / И.Г.Семакин, А.П.Шестаков. - М.: Мир, 2006. C. 346.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы