Разработка программного обеспечения для нахождения корней биквадратного уравнения - Курсовая работа

бесплатно 0
4.5 155
Решение биквадратного уравнения методом введения новой переменной. Создание программы с понятным интерфейсом. Математические и алгоритмические основы решения задачи. Алгебраическое уравнение четвертой степени. Программная реализация решения задачи.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами. Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами.Биквадратное уравнение решается методом введения новой переменной: положив x2 = y, придем к квадратному уравнению ay2 by c=0. Требуется разработать программное обеспечение для нахождения корней биквадратного уравнения. Решить уравнение x4 4x2-21=0. Решение: Положив x2 = y, получим квадратное уравнение y2 4y-21=0, откуда находим y1=-7, y2=3. Первое уравнение не имеет действительных корней, из второго находимТаким образом, для решения биквадратного уравнения необходимо помнить, что оно свелось к системе двух уравнений второй степени: y = x2 ay2 by c = 0. Получим три возможных варианта решений: дискриминант отрицателен: уравнение не имеет действительных решений; дискриминант не отрицателен и равен нулю: уравнение имеет один двукратный корень; дискриминант не отрицателен и равен нулю: уравнение имеет два различных корня. В первом случае, когда дискриминант квадратного уравнения отрицателен, система не имеет решения, так как одно из входящих в нее уравнений, а именно квадратное уравнение ay2 by c = 0, не имеет решения.#include #include #include #include #include "HANDTUNING.h"Рисунок 1 - Решение биквадратного уравнения Рисунок 2 - Решение биквадратного уравнения Рисунок 3 - Решение биквадратного уравнения Рисунок 4 - Решение биквадратного уравненияВ рамках данной курсовой работы была поставлена задача: построить алгоритм и реализовать программный продукт для нахождения корней биквадратного уравнения. В результате проектирования был составлен принципиальный алгоритм для решения поставленной задачи.

План
Содержание

Введение

1 Постановка задачи

2 Математические и алгоритмические основы решения задачи

3 Программная реализация решения задачи

4 Пример выполнения программы

Заключение

Список использованных источников и литературы

Введение
В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. "Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37...", - поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами. Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: "Смотри!", "Делай так!", "Ты правильно нашел". В этом смысле исключением является "Арифметика" греческого математика Диофанта Александрийского (III в.) - собрание задач на составление уравнений с систематическим изложением их решений. Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово "аль-джебр" из арабского названия этого трактата - "Китаб аль-джебер валь-мукабала" ("Книга о восстановлении и противопоставлении") - со временем превратилось в хорошо знакомое всем слово "алгебра", а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений. Алгебраическое уравнение четвертой степени.

, где a, b, c - некоторые действительные числа, называется биквадратным уравнением. Заменой уравнение сводится к квадратному уравнению с последующим решением двух двучленных уравнений и ( и - корни соответствующего квадратного уравнения).

Если и , то биквадратное уравнение имеет четыре действительных корня: , .

Если , то биквадратное уравнение имеет два действительных корня и мнимых сопряженных корня: .

Если и , то биквадратное уравнение имеет четыре чисто мнимых попарно сопряженных корня: Случай , аналогичен разобранному.

,

Целью данной курсовой работы является разработка программного обеспечения для нахождения корней биквадратного уравнения.

Вывод
В рамках данной курсовой работы была поставлена задача: построить алгоритм и реализовать программный продукт для нахождения корней биквадратного уравнения.

В результате проектирования был составлен принципиальный алгоритм для решения поставленной задачи. Далее он был детализован и реализован на ЭВМ. В конце, был проведен анализ полученных результатов, и сделаны необходимые выводы.

Программный продукт был реализован в среде визуального программирования CODEGEAR RADSTUDIO 2009 под ОС типа Windows для IBM PC-совместимых компьютеров.

Созданный программный продукт позволяет решить поставленную задачу. Также можно указать о том, что программа имеет интуитивно понятный интерфейс, что дополнительно помогает пользователю с наибольшей результативностью использовать программу.

В заключение после анализа полученных результатов были сделаны выводы, согласно которым алгоритм работает и применим для поставленной задачи.

Список литературы
1. Архангельский, А.Я. Программирование в С Builder 6. [Текст] / А.Я.Архангельский. - М.: Бином, 2003. С. 1154.

2. Ахо, А.. Построение и анализ вычислительных алгоритмов [Электронный ресурс] / А. Ахо, Дж. Хопкрофт, Дж.. Ульман. - М.: Мир. 1999. С. 143.

3. Бронштейн, И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н. Бронштейн, К.А. Семендяев. - М.: Наука, 2007. - 708 с.

4. Кремер, Н.Ш. Высшая математика для экономистов: учебник для студентов вузов. [Текст] / Н.Ш.Кремер, 3-е издание - М.:ЮНИТИ-ДАНА, 2006. C. 412.

5. Калиткин, Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. - М.: Питер, 2001. С. 504.

6. Биквадратные уравнения [Электронный ресурс] - Режим доступа: http://fio.ifmo.ru/archive/group34/c4wu2/pege3-2.htm

7. Павловская, Т.А. Программирование на языке высокого уровня. [Текст] / Т.А. Павловская. - М.: Питер, 2003. С. 461.

8. Семакин, И.Г. Основы программирования. [Текст] / И.Г.Семакин, А.П.Шестаков. - М.: Мир, 2006. C. 346.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?