Принцип действия, архитектура и виды технологий пассивных оптических сетей (PON). Выбор трассы прокладки оптического кабеля, выбор и установка оборудования на центральном и терминальных узлах. Особенности строительства волоконно-оптических линий связи.
При низкой оригинальности работы "Разработка проекта сети доступа по технологии GPON микрорайона №5 г. Минусинска", Вы можете повысить уникальность этой работы до 80-100%
Популярная в последнее время концепция «тройной услуги» (Triple Play) предусматривает предоставление пользователям телефонии, передачи данных и видеоинформации через одну сеть. Тем более что, такая технология уже появилась - это технология пассивных оптических сетей PON (passive optical network). При выборе решения сегодня им необходимо учитывать разнообразие потребностей абонентов, потенциал дальнейшего развития сети и ее экономичность. Частным случаем, когда в качестве пассивного оптического элемента выступает оптический разветвитель, является сеть PON, использующая топологию «точка-многоточка» P2MP (point-to-multipoint). Технология TURBOGEPON является одной из разновидностей технологии пассивных оптических сетей PON, которая обеспечивает скорость передачи 2,5 Гбит/с и позволяет строить сети доступа для многоквартирных домов, бизнес-центров, крупных предприятий, поселков и сельских учреждений, обладая при этом рядом преимуществ: · оператор предоставляет по одному кабелю такие услуги как: o высокоскоростной доступ в интернет, o телефонию, o IP-телевидение (в том числе HD), · скорость доступа к услугам до 1 Гбит/с по одному волокну с использованием механизма DBA (динамическое распределение полосы).Осуществляется доставка голосовых сервисов ТФОП, услуг выделенных TDM-линий, использующих стандарты T1/ E1 и DS3, а также передача Ethernet-кадров со скоростями 10 Мбит/с, 100 Мбит/с и 1000 Мбит/с. Кроме того, предоставление услуг VOIP и доставка цифрового видео в сети GPON требует для передачи данных четкого разграничения классов услуг и управления трафиком. Защищенное переключение осуществляется способом, совместимым с BPON, но в стандарт было добавлено несколько дополнительных типов резервных конфигураций: защита с полным резервированием 1 1 (так называемая защита класса С), а также защита с частичным резервированием 1:1 (защита класса B). Видеосигнал в радио - частотном диапазоне (RF), идущий, например, от головной станции кабельного телевидения, преобразуется в оптический 1550-нм сигнал, затем усиливается оборудованием, получившим название V-OLT (Video OLT), - для этого применяются усилители на волокне, легированном эрбием (EDFA), и далее с помощью WDM-каплера смешивается с основным 1490-нм сигналом и транслируется по дереву PON.[12] Устройства ONT выделяют 1550-нм сигнал, преобразуют его в RF-формат и направляют на приемник (телевизор).
Введение
Тенденция развития телекоммуникационной сети начала ХХІ века должна отвечать времени, то есть быть высокоорганизованной, интеллектуальной, автоматизированной, соответствовать техническому уровню высокоразвитых стран мира, обеспечивать передачу разнообразных сообщений и предоставление пользователям широкого спектра услуг с высоким качеством и надежностью.
Технический облик сети определяет внедрение передовых технологий, обеспечивающих ее модульность, гибкость, экономичность и высочайшие потенциальные возможности.
Хотя телефония и сейчас остается наиболее востребованной услугой, значительно вырос спрос на услуги Интернет не только среди офисных центров, но и среди домашних пользователей. Популярная в последнее время концепция «тройной услуги» (Triple Play) предусматривает предоставление пользователям телефонии, передачи данных и видеоинформации через одну сеть. Причем высокоскоростной Интернет и видео требуют широкополосности сетевых ресурсов. Кроме того, повышение спроса на широкополосный доступ определяется развитием новых технологий: видео по запросу (VOD), потоковое видео, интерактивные игры, видеоконференции, передача голоса в компьютерных сетях (VOIP),телевидение высокой четкости (HDTV) и другие.
При выборе технологии широкополосного доступа должны быть учтены потребности пользователей, их расположение, основные запрашиваемые услуги, различные экономические аспекты.
На развивающемся телекоммуникационном рынке опасно как принимать поспешные решения, так и дожидаться появления более современной технологии. Тем более что, такая технология уже появилась - это технология пассивных оптических сетей PON (passive optical network). Распределительная сеть доступа PON, основанная на древовидной волоконной кабельной архитектуре с пассивными оптическими разветвителями на узлах, возможно, представляется наиболее экономичной и способной обеспечить широкополосную передачу разнообразных приложений. При этом архитектура PON обладает необходимой эффективностью наращивания и узлов сети, и пропускной способности, в зависимости от настоящих и будущих потребностей абонентов. Все абонентские узлы являются терминальными, то есть отключение или выход из строя одного из них никак не влияет на работу остальных. Каждый абонентский узел рассчитан на обычный жилой дом или офисное здание и может охватывать сотни абонентов.
Сети PON значительно изменяют баланс сил на телекоммуникационном рынке, предлагая прагматичную модель работы. В случае их применения оператор может быть в большей степени уверен в компенсации финансовых затрат, прокладывая оптическое волокно от телефонного узла до района с группой потенциальных клиентов - предприятий или индивидуальных пользователей.
Таким образом, технология PON представляет особый интерес в плане расширения сферы применения цифровых широкополосных сетей.
В данном дипломном проекте представлен проект сети доступа технологий GPON (Passive optical network) микрорайона №5 г. Минусинска. Цель данного проекта заключается в разработке схемы организации связи, выборе трассы прокладки оптического кабеля, выборе и установке необходимого оборудования на центральном и терминальных узлах. Рассмотрены вопросы безопасности при строительстве сети.. Варианты построения сети доступа
Развитие сети интернет, в том числе появление новых услуг связи, способствует росту передаваемых по сети потоков данных и заставляет операторов искать пути увеличения пропускной способности транспортных сетей. При выборе решения сегодня им необходимо учитывать разнообразие потребностей абонентов, потенциал дальнейшего развития сети и ее экономичность.
Существуют четыре основные топологии построения оптических сетей доступа: «точка-точка», «кольцо», «дерево с активными узлами», «дерево с пассивными узлами».
2.1 «Точка-точка» (P2P)
Рисунок 2.1 - Топология «точка-точка» логического соединения в сетях доступа
Наиболее простая архитектура. Основной минус связан с низкой эффективностью кабельных систем. Необходимо вести отдельный ВОК из центрального офиса в каждое здание или каждому корпоративному абоненту. Данный подход может быть реализуем в том случае, когда абонентский узел (здание, офис, предприятие), к которому прокладывается выделенная кабельная линия, может использовать эти линии рентабельно.
Топология P2P не накладывает ограничения на используемую сетевую технологию. P2P может быть реализована как для любого сетевого стандарта, так и для нестандартных (proprietary) решений, например оптические модемы. С точки зрения безопасности и защиты передаваемой информации при соединении P2P обеспечивается максимальная защищенность абонентских узлов. Поскольку ОК нужно прокладывать индивидуально до каждого абонента, этот подход является наиболее дорогим и привлекателен в основном для абонентов в лице крупных корпоративных клиентов.
2.2 «Кольцо»
Рисунок 2.2 - Топология «кольцо» логического соединения в сетях доступа
Кольцевая топология на основе SDH положительно зарекомендовала себя в городских телекоммуникационных сетях. Однако в сетях доступа не все обстоит так же хорошо. Если при построении городской магистрали расположение узлов планируется на этапе проектирования, то в сетях доступа нельзя заранее знать, где, когда и сколько абонентских узлов будет установлено. При случайном территориальном и временном подключении пользователей кольцевая топология может превратиться в сильно изломанное кольцо с множеством ответвлений. Подключение новых абонентов осуществляется путем разрыва кольца и вставки дополнительных сегментов. На практике часто такие петли совмещаются в одном кабеле, что приводит к появлению колец, похожих больше на ломаную. Так называемые «сжатые» кольца (collapsed rings) значительно снижают надежность сети. А фактически главное преимущество кольцевой топологии сводится к минимуму.
2.3 Дерево с активными узлами
Рисунок 2.3 - Топология «дерево с активными узлами» логического соединения в сетях доступа
Дерево с активными узлами - это экономичное с точки зрения использования волокна решение. Оно хорошо вписывается в рамки стандарта Ethernet с иерархией по скоростям от центрального узла к абонентам 1000/100/10 Мбит/с (1000Base-LX, 100Base-FX, 10Base-FL). Стандарт IEEE 802.3 Ethernet давно перестали ограничивать нишей корпоративных сетей. Строящиеся по этому принципу сети могут иметь достаточно сложную и разветвленную древовидную архитектуру. Однако в каждом узле дерева обязательно должно находиться активное устройство (применительно к IP-сетям коммутатор или маршрутизатор). Оптические сети доступа Ethernet, преимущественно использующие данную топологию, относительно недороги. К основному недостатку следует отнести наличие на промежуточных узлах активных устройств, требующих индивидуального питания.
2.4 Дерево с пассивным оптическим разветвлением PON (P2MP)
Рисунок 2.4 - Топология «дерево с пассивным оптическим разветвителем» логического соединения в сетях доступа
Частным случаем, когда в качестве пассивного оптического элемента выступает оптический разветвитель, является сеть PON, использующая топологию «точка-многоточка» P2MP (point-to-multipoint). К одному порту центрального узла может быть подключен целый волоконнооптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом оптические разветвители, устанавливаемые в промежуточных узлах дерева, полностью пассивны и не требуют питания и специализированного обслуживания.
В топологии P2MP за счет оптимизации размещения разветвителей можно достичь значительной экономии оптических волокон и снижения стоимости кабельной инфраструктуры. Абонентские узлы не влияют на работоспособность сети в целом. Подключение, отключение или выход из строя одного или нескольких абонентских узлов никак не сказывается на работе остальных.
Преимущества архитектуры PON сводятся, во-первых, к отсутствию промежуточных активных узлов и экономии волокон. Во-вторых, экономятся оптические приемопередатчики в центральном узле. В-третьих, нужно отметить легкость подключения новых абонентов и удобство обслуживания (подключение, отключение или выход из строя одного или нескольких абонентских узлов никак не сказывается на работе остальных).
Древовидная топология P2MP позволяет оптимизировать размещение оптических разветвителей исходя из реального расположения абонентов, затрат на прокладку ОК и эксплуатацию кабельной сети. К недостаткам можно отнести возросшую сложность технологии PON и отсутствие резервирования в простейшей топологии дерева.
Решения на основе архитектуры "дерево с пассивными узлами" используют логическую топологию типа "точка-многоточка" P2MP (point-to-multipoint) , которая положена в основу технологии PON, к одному порту центрального узла можно подключать целый волоконнооптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом в промежуточных узлах дерева устанавливаются компактные, полностью пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания. Общеизвестно, что PON позволяет экономить на кабельной инфраструктуре, за счет сокращения суммарной протяженности оптических волокон, так как на участке от центрального узла до разветвителя используется всего одно волокно. В меньшей степени обращают внимание на другой источник экономии - сокращение числа оптических передатчиков и приемников в центральном узле. Между тем экономия от второго фактора в некоторых случаях оказывается даже более существенной.
Итак, можно сделать вывод, что применение архитектуры "дерево с пассивными узлами" является более предпочтительным, ввиду следующих причин: 1. Структура оптимальна по количеству волокон;
2. Оптимальное решение по количеству оптических приемопередатчиков;
3. Легкость подключения новых абонентов и удобство обслуживания;
4. Отсутствие промежуточных активных узлов;
5. Функционирование сети среднее по сложности.
В топологии "точка - множество точек" за счет оптимизации размещения сплиттеров может достигаться значительная экономия оптических волокон и снижение стоимости кабельной инфраструктуры. Все абонентские узлы являются терминальными, и отключение или выход из строя одного или нескольких абонентских узлов никак не влияет на работу остальных. Каждый волоконнооптический сегмент подключается к одному приемопередатчику в центральном узле (в отличие от топологии "точка-точка"), что также дает значительную экономию в стоимости оборудования. Развитие сети может происходить плавно, в любых направлениях по мере необходимости.
3. Описание технологии PON
PON (пассивные оптические сети) - это семейство быстро развивающихся, перспективных технологий широкополосного мультисервисного доступа по оптическому волокну. Суть технологии PON вытекает из ее названия и состоит в том, что ее распределительная сеть строится без использования активных компонентов: разветвление оптического сигнала в одноволоконной оптической линии связи осуществляется с помощью пассивных разветвителей оптической мощности - сплиттеров.
3.1 Примеры построения сетей PON
Определение основных терминов
Центральный узел OLT (optical line terminal) - устройство, устанавливаемое в центральном офисе, оно принимает данные со стороны магистральных сетей через интерфейсы SNI (service node interfaces) и формирует нисходящий поток к абонентским узлам (прямой поток) по дереву PON.
Абонентский узел ONT (optical network terminal) имеет, с одной стороны, абонентские интерфейсы, а с другой, - интерфейс для подключения к дереву PON - передача ведется на длине волны 1310 нм, а прием - на длине волны 1550 нм. ONT принимает данные от OLT, конвертирует их и передает абонентам через абонентские интерфейсы UNI (user network interfaces).
Оптический разветвитель - это пассивный оптический многополюсник, распределяющий поток оптического излучения в одном направлении и объединяющий несколько потоков в обратном направлении. В общем случае у разветвителя может быть M входных и N выходных портов. В сетях PON наиболее часто используют разветвители 1XN с одним входным портом. Разветвители 2XN могут использоваться в системе с резервированием по волокну.
Основная идея архитектуры PON - использование всего одного приемопередающего модуля в центральном узле OLT для передачи информации множеству абонентских устройств ONT и приема информации от них.
Структурно любая пассивная оптическая сеть состоит из трех главных элементов - станционного терминала OLT, пассивных оптических сплиттеров и абонентского терминала ONT. Терминал OLT обеспечивает взаимодействие сети PON с внешними сетями, сплиттеры осуществляют разветвление оптического сигнала на участке тракта PON, а ONT имеет необходимые интерфейсы взаимодействия с абонентской стороны. На основе архитектуры PON возможны решения с использованием логической топологии «point-to-multipoint». К одному порту центрального узла можно подключить целый волоконнооптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом пассивные оптические разветвители (сплиттеры) устанавливаются в промежуточных узлах дерева и не требуют питания и обслуживания.
В современном мире, при постоянном росте объемов передаваемого трафика (мультимедиа, голос, телевидение, в том числе и высокого разрешения) и тенденции к увеличению требований потребителей к скорости доставки информации, требуемые скорости, при массовом охвате населения, в большей степени, чем другие, способна обеспечить технология PON. Быстро развиваясь, она становится одним из основных каналов доставки пользователю услуг широкополосного доступа.
Технология TURBOGEPON является одной из разновидностей технологии пассивных оптических сетей PON, которая обеспечивает скорость передачи 2,5 Гбит/с и позволяет строить сети доступа для многоквартирных домов, бизнес-центров, крупных предприятий, поселков и сельских учреждений, обладая при этом рядом преимуществ: · оператор предоставляет по одному кабелю такие услуги как: o высокоскоростной доступ в интернет, o телефонию, o IP-телевидение (в том числе HD), · скорость доступа к услугам до 1 Гбит/с по одному волокну с использованием механизма DBA (динамическое распределение полосы).
· отсутствие обслуживаемых узлов с активным оборудованием - между станционным и абонентским оборудованием располагаются только пассивные разветвители.
· эффективное использование ресурса волоконнооптического кабеля (до 64 абонентов на 1 волокно).
Рисунок 3.1 - Обобщенная структура построения городской сети PON
Рисунок 3.2 - Обобщенная структура построения сети PON в поселке
Рисунок 3.3 - Предоставление услуг абоненту
3.2 Виды технологий PON
В семействе PON существует несколько разновидностей, отличающихся, в первую очередь, базовым протоколом передачи.
Первой в середине 90-х годов была разработана технология APON, которая базировалась на передаче информации в ячейке структуры АТМ со служебными данными. В этом случае обеспечивалась скорость передачи прямого и обратного потоков по 155 Мбит/с (симметричный режим) или 622 Мбит/с в прямом потоке и 155 Мбит/с в обратном (ассиметричный режим).
Во избежание наложения данных, поступающих от разных абонентов, OLT направляло на каждый ONU служебные сообщения с разрешением на отправку данных. В настоящее время APON в своем первоначальном виде практически не используется. Дальнейшее совершенствование этой технологии привело к созданию нового стандарта - BPON. Здесь скорость прямого и обратного потоков доведена до 622 Мбит/с в симметричном режиме или 1244 Мбит/с и 622 Мбит /с в ассиметричном режиме.
Предусмотрена возможность передачи трех основных типов информации (голос, видео, данные), причем для потока видеоинформации выделена длина волны 1550 нм. BPON позволяет организовать динамическое распределение полосы между отдельными абонентами. После разработки более скоростной технологии GPON, применение BPON практически утратило смысл чисто экономически.
Успешное использование технологии Ethernet в локальных сетях и построение на их основе оптических сетей доступа предопределило разработку в 2000 году нового стандарта EPON. Такие сети, в основном, рассчитаны на передачу данных со скоростью прямого и обратного потоков 1Гбит/с на основе IP-протокола для 16 (или 32) абонентов. Исходя из скорости передачи, в статьях и литературных источниках часто фигурирует название GEPON ( Gigabit Ethernet PON ), которое также относится к стандарту IEEE 802.3ah. Дальность передачи в таких системах достигает 20 км.
Для прямого потока используется длина волны 1490 нм, 1550 нм резервируется для видео приложений. Обратный поток передается на 1310 нм. Во избежание конфликтов между сигналами обратного потока применяется специальный протокол управления множеством узлов (MULTIPOINT Control Protocol, MPCP). В GEPON поддерживается операция обмена информацией между пользователями (bridging).
Для больших операторов, строящих большие разветвленные сети с системами резервирования, наиболее удачной считается технология GPON, которая наследует линейку APON- BPON, но с более высокой скоростью передачи -1244 Мбит/с и 2488 Мбит/с (в ассиметричном режиме) и 1244 Мбит/с (в симметричном режиме).
За основу был принят базовый протокол SDH (а точнее протокол GFP). Возможно подключение до 32 (или 64) абонентов на расстоянии 20 км (с возможностью расширения до 60 км). GPON поддерживает как трафик АТМ, так и IP, речь и видео (инкапсулированные в кадры GEM - GPON Encapsulated Method), а также SDH. Сеть работает в синхронном режиме с постоянной длительностью кадра. Линейный код NRZ со скремблированием обеспечивают высокую эффективность полосы пропускания.
Единственным серьезным недостатком GPON является высокая стоимость оборудования.
Таблица 3.2 - Сравнительные характеристики трех видов PON
Как мы видим из таблицы 3.2, отдельные разновидности PON имеют свои преимущества и недостатки: · BPON, основанная на платформе АТМ , уже не обеспечивает высокую скорость передачи и практически не имеет перспектив;
· GPON более удачна для сетей большой протяженности и емкости. Базовая платформа SDH обеспечивает хорошую защиту информации в сети, широкую полосу пропускания и другие преимущества. Однако более сложное и дорогостоящее оборудование окупается только при высокой степени загрузки;
· в GEPON, в отличие от GPON, отсутствуют специфические функции поддержки TDM, синхронизации и защитных переключений, что делает эту технологию самой экономичной из всего семейства. К тому же, предполагается дальнейшее развитие этого ряда - 10 GEPON (по аналогии с 10 Gb Ethernet).
На данной стадии проектирования сетей связи рекомендуется не останавливать свой выбор на какой-либо одной из технологий PON, так как каждая имеет свои плюсы и минусы, но на сегодняшний день предпочтительней выглядит технология GPON изза лучшей проработанности реальных систем и возможности получения больших скоростей в ближайшем будущем (до 10 Гбит/с).
3.3 Принцип действия пассивных оптических сетей
Древовидная архитектура доступа PON, основанная на построении волоконно - кабельных сетей, с пассивными оптическими разветвителями, представляется наиболее экономичной и способной обеспечить широкополосную передачу разнообразных приложений. При этом архитектура PON обладает необходимой эффективностью наращивания как узлов сети, так и пропускной способности в зависимости от настоящих и будущих потребностей абонентов.
Операторы связи, коммунальные и строительные компании все чаще говорят об интеграции услуг связи, используя термин "triple play". В этом самое главное преимущество технологии, т.к. все услуги можно получить из одной розетки. Пассивная оптическая сеть заводится прямо в квартиру абонента, не требуя установки в доме активного оборудования, что повышает надежность и качество сети. Разветвление на телефонный, телевизионный и интернет кабели происходит уже в квартире, из оптического модема. Высокая пропускная способность волоконнооптических решений доступа делает их весьма привлекательными для реализации этой разновидности телекоммуникационных сервисов.
Еще 5 лет назад оптический кабель считался крайне дорогим. Однако в настоящее время благодаря значительному снижению цен на оптические компоненты этот подход стал актуален. Сегодня прокладывать ОК для организации сети доступа стало выгодно и при обновлении старых, и при строительстве новых сетей доступа (последних миль). При этом имеется множество вариантов выбора волоконнооптической технологии доступа.
В стандартной оптической сети PON на стороне провайдера связи используются OLT(Optical Line Terminal), а в качестве абонентских устройств, применяются ONT (Optical Network Terminal). ONT представляет из себя более сложное устройство, чем CPE, используемого в Ethernet решении. Кроме функций представления широкополосного доступа и поддержки сервисов, ONT должен дополнительно поддерживать: · протокол управления доступа к PON;
· лазеры пакетного режима (burst-mode lasers),обеспечивающие передачу данных ONT только в определенные терминалом OLT отрезки времени;
· повышенная мощность сигнала (требуется учитывать потери на делителях и пр.) ;
· шифрование; высокая производительность.
Эти дополнительные функции обусловливают значительно более высокую стоимость устройства ONT для архитектуры PON,чем устройства Ethernet FTTH CPE.
Число абонентских узлов ONT, подключенных к одному приемопередающему модулю OLT, может быть настолько большим, насколько позволяет бюджет мощности и максимальная скорость приемопередающей аппаратуры. Для передачи потока информации от OLT к ONT - прямого (нисходящего) потока, как правило, используется длина волны 1550 нм. Наоборот, потоки данных от разных абонентских узлов в центральный узел, совместно образующие обратный (восходящий) поток, передаются на длине волны 1310 нм. В OLT и ONT встроены мультиплексоры WDM, разделяющие исходящие и входящие потоки.
Прямой поток
Прямой поток на уровне оптических сигналов является широковещательным. Каждый абонентский узел ONT, читая адресные поля, выделяет из общего потока предназначенную только ему часть информации (рисунок 3.1). Фактически мы имеем дело с распределенным демультиплексором.
Обратный поток
Все абонентские узлы ONT ведут передачу в обратном потоке на одной и той же длине волны, используя концепцию множественного доступа с временным разделением TDMA (time division multiple access). Для того чтобы исключить возможность пересечения сигналов от разных ONT, для каждого из них устанавливается свое индивидуальное расписание по передаче данных c учетом поправки на задержку, связанную с удалением данного ONT от центрального узла OLT. Эту задачу решает протокол TDMA MAC.
Такое управление трафиком используется во всех пассивных оптических сетях изза топологии точка-многоточка.
France Telecom, Deutsche Telecom, NTT, KPN, Telefonica и Telecom Italia) создала консорциум для того, чтобы претворить в жизнь идеи множественного доступа по одному волокну. Эта неформальная организация, поддерживаемая ITU-T, получила название FSAN (full service access network). Много новых членов, как операторов, так и производителей оборудования, вошло в нее в конце 90-х годов. Целью FSAN была разработка общих рекомендаций и требований к оборудованию PON для того, чтобы производители оборудования и операторы могли сосуществовать вместе на конкурентном рынке систем доступа PON. На сегодня FSAN насчитывает 40 операторов и производителей и работает в тесном сотрудничестве с такими организациями по стандартизации, как ITU-T, ETSI и ATM форум.[4]
В середине 90-х годов общепринятой была точка зрения, что только протокол ATM способен гарантировать приемлемое качество услуг связи QOS между конечными абонентами. Поэтому FSAN, желая обеспечить транспорт мультисервисных услуг через сеть PON, выбрал за основу технологию ATM. В результате в октябре 1998 года появился первый стандарт ITU-T G.983.1, базирующийся на транспорте ячеек ATM в дереве PON и получивший название APON . Далее в течение нескольких лет появляется множество новых поправок и рекомендаций в серии G.983.x (x = 1-7), скорость передачи увеличивается до 622 Мбит/с. В марте 2001 года появляется рекомендация G.983.3, добавляющая новые функции в стандарт PON : • передача разнообразных приложений (голоса, видео, данные) - это фактически позволило производителям добавлять соответствующие интерфейсы на OLT для подключения к магистральной сети и на ONT для подключения к абонентам;
• расширение спектрального диапазона открывает возможность для дополнительных услуг на других длинах волн в условиях одного и того же дерева PON, например, широковещательное телевидение на третьей длине волны. За расширенным таким образом стандартом APON закрепляется название BPON (broadband PON).
На базе сети PON возникли новые стандарты и обозначаются дополнительной буквой перед аббревиатурой PON. Наиболее распространенными сетями PON являются: · APON (ATM PON - пассивная оптическая сеть, использующая технологию ATM), · BPON (Broadband PON - широкополосная пассивная оптическая сеть), · GPON (Gigabit-capable PON - пассивная оптическая сеть, обеспечивающая гигабитные скорости передачи данных), · EPON (Ethernet PON - пассивная оптическая сеть, использующая технологию Ethernet).
3.4 Технология EPON (Ethernet Passive Optical Network)
В ноябре 2000 года комитет LMSC (LAN/MAN standards committee) IEEE создает специальную комиссию под названием EFM (Ethernet in the first mile - Ethernet на первой миле) 802.3ah, реализуя тем самым пожелания многих экспертов построить архитектуру сети PON, наиболее приближенную к широко распространенным в настоящее время сетям Ethernet. Параллельно идет формирование альянса EFMA (Ethernet in the first mile alliance), который создается в декабре 2001 года. В дальнейшем альянс EFMA и комиссии EFM дополняют друг друга и тесно работают над стандартом. Цель совместной работы - достижение консенсуса между операторами и производителями оборудования и выработка стандарта IEEE 802.3ah, полностью совместимого с разрабатываемым стандартом магистрального пакетного кольца IEE 802.17.
Комиссия EFM 802.3ah должна стандартизировать три разновидности решения для сети доступа: EFMC -решение «точка-точка» с использованием медных витых пар;
EFMF- решение «точка-точка» по волокну;
EFMP-решение, основанное на соединении «точка-многоточка» по волокну. Это решение получило название EPON.
Таблица 3.1- Сравнение технологий APON, EPON, GPON