Возможность неинвазивной и динамической оценки кровотока по сосудам малого калибра - одна из актуальных задач современной ангиологии. Сущность эффекта Доплера, применяемого в медицинской практике. Блок-схема непрерывноволнового доплеровского прибора.
При низкой оригинальности работы "Разработка прибора для измерения кровотока, основанного на эффекте Доплера", Вы можете повысить уникальность этой работы до 80-100%
Они позволяют оценить структуру и диаметр микрососудов, состояние их тонуса, выявить различные внутиивнесосудистые изменения (замедление кровотока, стаз, липидные включения и т.д.). Однако данные методы исследования не позволяют оценить тканевой кровоток в целом, выявить особенности его регуляции. Существуют методы оценки тканевого кровотока, в том числе окклюзионная плетизмография, вымывание радиоактивных изотопов, флюорисцентная микроангиография, введение меченых микросфер и т.д. Использование приборов на основе доплеровского эффекта является наиболее распространенным и удобным неинвазивным методом исследования кровотока, который позволяет выявить особенности регуляции кровотока. В данной дипломной работе необходимо разработать прибор для измерения кровотока на основе доплеровского эффекта, в котором применяется ультразвуковые волны.Измерение скорости кровотока в магистральных артериях и венах имеет большое диагностическое значение, поскольку косвенно свидетельствует о патологическом изменении геометрии сосуда и упругих свойствах стенки сосудов. Для измерения скорости и направления кровотока в медицине принято применять приборы и аппараты, которые основаны на эффекте Доплера, который используется как с ультразвуком, так и с лазерным излучением. Появление в начале 80-х годов приборов с цветовым картированием потоков позволило потребителю успешно решать задачи локализации исследуемого сосуда по направлению и глубине, детектировать направление потоков с помощью специальных световых шкал, производить объективную оценку как интегральных скоростей потоков, так и распределений в частотно-временной области на основе спектрального анализа, выполнять вычисление объемных показателей скоростей потоков в выбранном сечении сосуда. 1.3.2 Основные принципы построения доплеровской аппаратуры Разработчиками последовательно были созданы несколько поколений ультразвуковых доплеровских приборов: с непрерывным излучением без выделения направления кровотока (простейшие индикаторные приборы); с выделением направления - разделением прямого и обратного кровотока и получением графического отображения кривой (огибающей) усредненной по объему скорости кровотока; с импульсным излучением для локализации по глубине исследования; со спектральным анализом информации - для получения частотного и временного распределения скоростей в исследуемом объекте. В соответствии с эффектом Доплера каждой скорости движения элементов кровотока соответствует доплеровский сигнал определенной частоты, поэтому формирование распределения доплеровских скоростей элементов кровотока сводится к выявлению набора частотных составляющих в сигнале, т.е. к спектральному анализу сигнала.В процессе работы прибора производятся механические колебания элементов тканей на поверхности тела. Циклическое движение элементов тканей на поверхности, производимое пьезоэлектрической пластиной, вызывает в свою очередь, силовые воздействия на элементы тканей с более глубоких слоев, и, соответственно, их циклическое перемещение и т.д. В настоящее время в ультразвуковых приборах применяется ультразвук с частотами до 20 МГЦ. А чем выше частота, тем ниже минимальная регистрируемая скорость, поэтому, применяемые в настоящее время ультразвуковые доплеровские приборы для измерения кровотока, как отмечалось ранее, имеют ограничения на минимальную регистрируемую скорость. Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами: - сложностью получения приемлемых параметров ультразвукового преобразователя, выполненного на основе пьезокерамики, для работы на частотах свыше 10 МГЦ.Для формирования прямоугольных импульсов частотой 4 МГЦ используем генератор типа К555ЛАЗ на логических элементах DD1.1 и DD1.2 с кварцевой стабилизацией. Сигнал U1 поступает на синхронизирующий вход триггера типа К555ТМ2 DD2, на выходах которого формируются противофазные импульсы напряжения U2 и U3 с частотой 2 МГЦ. Эти напряжения через элементы DD1.4 и DD1.5 и резисторы R3 и R4 поступают на транзисторы (КТ316А) VT1 и VT2, работающие в ключевом режиме и нагруженные на трансформатор Т1. Зная соотношение для времени периода T (время от начала одного импульса до начала следующего), можно найти сопротивление 1 . Для нашего случая выберем транзистор типа КТ316А и проведем расчет величины времени нарастания тф (по этому параметру можно будет судить о trialльности выбора типа транзистора).Благодаря своим достоинствам (большая эффективность, возможность изготовления элементов любой формы и возбуждения различных видов колебаний, широкий частотный диапазон) чаще всего на практике применяют пьезоэлектрические преобразователи. В нашем случае будет использоваться совещенный пьезоэлектрический преобразователь - генерация ультразвуковых колебаний и приема эхосигналов в датчике осуществляется одной и той же пластиной.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы