Изучение технологий волоконно-оптической линии связи и ее компонентов, связанных с передачей информации. Оценка передающих оптоэлектронных модулей. Моделирование работы устройства после повышения характеристик, для интегрирования в сеть предприятия.
При низкой оригинальности работы "Разработка передающего оптоэлектронного модуля для интегрирования волоконно-оптического сегмента в существующую сеть предприятия", Вы можете повысить уникальность этой работы до 80-100%
2.4 Деградация и время наработки на отказ Моделирование работы устройства. 3.2 Расчет мощности излучения передатчика и выбор типа излучателя 3.5 Расчет устройства автоматической регулировки уровня оптического сигнала 3.7 Расчет источника питания одноволоконной оптической системы передачиВолоконнооптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно".Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка бит/с или терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга.· Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди. · Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.Обладая главными патентами, американские фирмы (в первую очередь это относится к фирме "CORNING") оказывают влияние на производство и рынок компонентов ВОЛС во всем мире, благодаря заключению лицензионных соглашений с другими фирмами и созданию совместных предприятий. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2. При такой геометрии в волокне может распространяться только один луч (одна мода). Затухание зависит от длины волны излучения, вводимого в волокно.По условиям эксплуатации кабели подразделяют на: · монтажные Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров. Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети. По видам конструкций различают кабели повивной скрутки, пучковой скрутки, кабели с профильным сердечником, а также ленточные кабели. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин.Основу передатчика составлял светоизлучающий диод, работающий на длине волны 0.85 мкм в многомодовом режиме. В течение последующих трех лет появилось второе поколение - одномодовые передатчики, работающие на длине волны 1.3 мкм. Исследования продолжались и вот появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи - то есть системам, в которых информация передается модуляцией частоты или фазы излучения. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км. Появление оптических усилителей на основе световодов, легированных эрбием, способных усиливать проходящие по световоду сигналы на 30 DB, дало начало пятому поколению систем оптической связи.Передающие оптоэлектронные модули (ПОМ), применяемые в волоконнооптических системах, предназначены для преобразования электрических сигналов в оптические.Перечислим основные требования, которым должен удовлетворять источник излучения, применяемый в ВОЛС: - излучение должно вестись на длине волны одного из окон прозрачности волокна. источник излучения должен выдерживать необходимую частоту модуляции для обеспечения передачи информации на требуемой скорости; источник излучения должен быть эффективным, в том смысле, что большая часть излучения источника попадала в волокно с минимальными потерями; источник излучения должен иметь достаточно большую мощность, чтобы сигнал можно было передавать на большие расстояния, но и не на столько, чтобы излучение приводило к нелинейным эффектам или могло повредить волокно или оптический приемник;Принцип работы светодиода основан на излучательной рекомбинации носителей заряда в активной области гетерогенной структуры при пропускании через нее тока, рис. Носители заряда - электроны и дырки - проникают в активный слой (гет
План
Оглавление
Введение
1. Современные технологии ВОЛС, их сравнительный анализ
1.1 Особенности оптических систем связи
1.1.1 Физические особенности
1.1.2 Технические особенности
1.2 Оптическое волокно
1.3 Волоконнооптический кабель
1.4 Оптические коннекторы (соединители)
1.5 Электронные компоненты систем оптической связи
2. Передающий оптоэлектронный модуль
2.1 Основные компоненты и принципы функционирования
2.2 Типы и характеристики источников излучения
2.2.1 Светоизлучающие диоды
2.2.2 Лазерные диоды
Список литературы
Введение
История развития средств передачи информации является неотъемлемой частью истории развития общества, причем потребности в обмене информацией всегда превышали существующие технические возможности их удовлетворения. На протяжении всего предыдущего столетия связисты стремились повысить скорость передачи информации. Потребность в большем количестве передаваемой информации стала причиной перехода от телеграфа вначале к телефону, а затем - к радио. После этого встала задача передачи на более высоких частотах. Амплитудное модулирование позволяло передавать тысячи герц, частотное модулирование - миллионы, с развитием телевидения был освоен диапазон частот в сотни миллионов герц. Наконец в 60-х годах началось освоение микроволнового диапазона (диапазона СВЧ), характеризующегося частотой в миллиарды герц. Именно в это время ведущим поставщикам телекоммуникационных услуг стало ясно, что технология высокочастотной радиосвязи, основанная на использовании медных кабелей, устаревает и не может справиться с бурным ростом потока информации. Возникла потребность в новом виде кабеля, способного передавать больше информации при меньшем объеме самого носителя информации. У световых волн частота в 100 тысяч раз больше, чем у микроволн - впечатляющая разница! Но в то время никто еще не знал, как обуздать свет.
В 1960 году был изобретен лазер - идеальный источник света для оптической связи. Теперь ученым оставалось сделать специальные световоды для передачи оптических сигналов по кабелю. В это время в компании Corning, и начали активные исследования по созданию оптического волокна с низкими потерями. Успех пришел в 1970-х годах, когда было создано волокно с затуханием в 16 децибел. Именно этот год считается годом начала новой информационной эпохи - эры волоконнооптической связи.
Развитие волоконнооптических сетей связи характеризуется очень быстрым увеличением скорости передачи информации. Скорость передачи, достигнутая экспериментально в лабораторных условиях, и скорость передачи высоконадежных коммерческих сетей растут экспоненциально, удваиваются примерно каждые 2 года. Эта тенденция обеспечивается как неуклонным ростом скорости передачи информации по одному каналу, так и ростом числа одновременно передаваемых по одному волокну каналов в системах со спектральным разделением каналов. К середине 1990-х г.г. в нескольких национальных сетях были введены в эксплуатацию системы со скоростью передачи 2.5 Гб/с.
В настоящее время широко используются системы со скоростью передачи 10 Гб/с на один канал, внедряются системы со скоростью 40 Гб/с на один канал, ведутся работы по внедрению коммерческих систем со скоростью 160 Гб/с на один канал. В лабораторных экспериментах достигнуты скорости передачи информации 640 Гб/с и более на один спектральный канал.
Большинство современных ВОЛС работает в третьем окне прозрачности (диапазон длин волн примерно 1530?1560 нм), совпадающем с полосой усиления эрбиевых усилителей и с минимумом поглощения кварцевого волокна. Значительная часть одномодового волокна, используемого во всем мире, это так называемое обычное или стандартное волокно, длина волны нулевой хроматической дисперсии которого примерно 1300 нм. Такое волокно обладает значительной дисперсией (17 пс/км/нм) в третьем окне прозрачности. Большая величина хроматической дисперсии стандартного волокна вызывает значительные искажения световых сигналов и существенно ограничивает дальность действия систем передачи информации со скоростями более 1 Гбит/с. Так, при использовании узкополосного источника излучения с внешней модуляцией, дисперсионное ограничение дальности при скорости передачи 2,5 Гбит/с примерно равно 1000 км, а при увеличении скорости передачи информации до 10 Гбит/с дальность сокращается до 61 км.
Для ослабления влияния хроматической дисперсии разработаны специальные виды оптического волокна, обладающего малой величиной дисперсии. Некоторое время назад было создано волокно (DSF), обладающее нулевой дисперсией на длине волны в третьем окне прозрачности (~1550 нм). Однако вскоре выяснилось, что это волокно, получившее название волокна со смещенной дисперсией, не пригодно для работы в системах со спектральным разделением каналов изза их сильного нелинейного взаимодействия, обусловленного эффектом четырехволнового смешения а также эффектами фазовой само- и кроссмодуляции. Поскольку наличия в волокне хроматической дисперсии величиной порядка нескольких пс/нм/км достаточно для эффективного подавления эффектов кроссмодуляции и четырехволнового смешения, позднее было разработано волокно (NZDSF), обладающее малой, но ненулевой хроматической дисперсией в рабочем диапазоне длин волн.
Мир вступил в третье тысячелетие, характеризующееся, с одной стороны, непрерывно растущими потребностями мирового сообщества в обмене информацией, а с другой - технической возможностью практически полностью их удовлетворить. Переход на оптические системы связи позволяет получить выдающиеся результаты в увеличении скорости передачи информации и в настоящее время происходит повсеместно. В наиболее развитых европейских странах (Швеция, Финляндия) реализуется программа "волокно в каждый дом".
Масштабы развития волоконнооптической связи действительно поразительны. Мировое производство волоконных световодов в настоящее время составляет 60 млн. км/год, то есть каждую минуту в системах связи прокладываются более 100 км волоконных световодов. Все материки связаны между собой подводными волоконнооптическими кабелями связи, общая длина которых достаточна, чтобы обмотать земной шар шесть раз.
Конструкция волоконнооптического кабеля должна предусматривать защиту волокна от различных повреждений. Это значит, что при проектировании кабеля волоконный световод должен размещаться так, чтобы на него, насколько это возможно, не оказывали воздействия вышеперечисленные факторы. При этом такая конструкция должна быть пригодна для практического использования. Проведенные многочисленные исследования привели к разработке специализированных конструкций кабелей, которые используются в зависимости от различных видов применения. Ниже перечисляются стандартные виды оптических кабелей связи, отличающиеся друг от друга областью применения и способом прокладки.
Таблица 1.1
1. Кабель внутриобъектовой прокладки;
2. Кабель для прокладки в канализации, в т.ч. в пластмассовом трубопроводе;
3. Кабель для воздушной подвески, в т.ч. используемый в качестве провода или троса воздушной ЛЭП;
4. Кабель для прокладки в грунт, как в открытую траншею, так и бестраншейным способом
5. Подводный кабель, в т.ч. морской глубоководный кабель
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы