Разработка микропроцессорной системы управления подачей воздуха в термотравильный агрегат ТТА№3 цеха №1 ООО "Спецтехнологии" - Дипломная работа

бесплатно 0
4.5 233
Характеристика технологического процесса нагрева проволоки в термотравильном агрегате ТТА №3. Расчетное обоснование выбора элементов автоматики разрабатываемой системы управления подачей воздуха в термотравильный агрегат. Определение затрат на проект.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Описать технологический процесс нагрева проволоки, а также описать функциональную схему автоматизации термотравильного агрегата. Операции включают в себя травление катанки, грубое волочение, патентирование, охлаждение проволоки в расплаве селитры, охлаждение и промывку проволоки после ванны с расплавом селитры, химическое травление, нанесение покрытий, сушку проволоки, среднее волочение, тонкое волочение, намотку проволоки, окончательный контроль и отгрузку. Нагрев и поддержание заданной температуры расплава селитры осуществляется тепловыми электронагревателями, а также за счет тепла, вносимого проволокой из печи. После выхода из ванны с расплавом селитры проволока охлаждается и промывается в двух последовательно расположенных ваннах для удаления с ее поверхности остатков селитры. Снятие окалины, загрязнений и подготовка поверхности проволоки перед нанесением покрытия осуществляется химическим травлением в растворе серной кислоты.В первую очередь принимают во внимание такие факторы, как пожар и взрывоопасность, агрессивность и токсичность среды, число параметров, участвующих в управлении, и их физико-химических свойствах, дальность передачи сигналов информации и управления, требуемые точность и быстродействие. Эти факторы определяют выбор методов измерения технологических параметров, требуемые функциональные возможности регуляторов и приборов (законы регулирования, показания, запись и т.д.), диапазоны измерения, классы точности, вид дистанционной передачи и т.д. Выбирая тот или иной прибор по функциональному признаку, необходимо простоту и дешевизну аппаратуры сочетать с требованиями контроля и регулирования данного параметра. Регулируемые параметры технологического процесса необходимо, как правило также контролировать самопищущими приборами, что имеет значения для корректировки настройки регуляторов. Основными параметрами, определяющими выбор регулирующих органов, являются: условное или рабочее давление; условный проход; определяющий необходимую пропускную способность клапана; пропускная (расходная) характеристика, выражающая зависимость относительной пропускной способности от относительного хода штока регулируемого органа; величина негерметичности (допустимый начальный пропуск при полном закрытии клапана).Для измерения расходов газов и жидкостей, широко применяют сужающие устройства (диафрагмы, сопла, трубы и сопла Вентури). Сужающие устройства для измерения расхода коксового и доменного газа, воды и воздуха, выполняют из стали 1Х13 или 1Х18Н9Т; для измерения агрессивных жидкостей и газов - из высоколегированных сталей, латуни, бронзы в зависимости от свойств измеряемой среды. При использовании камерных диафрагм, обеспечивается выравнивание давлений, до и после диафрагмы. Отбор давления производят через кольцевые камеры. При использовании бескамерных диафрагм, импульсы давлений отбирают до и после диафрагмы через просверленные во фланцах и трубопроводах отверстиях.Для регулирования расхода, в системах автоматизации применяют различные расходомеры.Датчик состоит из преобразователя давления (в дальнейшем сенсорный блок) и электронного преобразователя. Датчики имеют унифицированный электронный преобразователь. Измеряемая входная величина подается в камеру сенсорного блока и преобразуется в деформацию чувствительного элемента (тензопреобразователя), вызывая при этом изменение электрического сопротивления его тензорезисторов. Электронный преобразователь датчика преобразует это изменение сопротивления в токовый выходной сигнал. Чувствительным элементом тензопреобразователя является пластина из монокристаллического сапфира с кремниевыми пленочными тензорезисторами, прочно соединенная с металлической мембраной тензопреобразователя.Система включает в свой состав: Модули блоков питания (PS): используются для подключения SIMATIC S7-400 к источникам питания =24/ 48/ 60/ 120/ 230В или ~120/ 230В. Модули центральных процессоров (CPU): в составе контроллера могут использоваться центральные процессоры различной производительности. При необходимости, в базовом блоке контроллера может быть использовано до 4 центральных процессоров. При необходимости в составе S7-400 могут быть использованы: Интерфейсные модули (IM): для связи базового блока контроллера со стойками расширения. Модули устанавливаются в свободные разъемы монтажных стоек в произвольном порядке и фиксируются в рабочих положениях винтами.Пускатель предназначен для бесконтактного управления электрическим исполнительным механизмом с однофазным конденсаторным электродвигателем.Транзистор V8, резисторы R4, R5 и выпрямительный мост V9 исключают включение блокинг-генераторов при подаче сигнала управления на оба входа. Блокинг-генераторы, формирующие импульсы управления триаками, состоят из транзисторов V15 - V17 [V15, V16], диодов V12 - V14 [V10 - V13], V18 - V20 [V18, V19], трансформаторов Т1 - Т3 [T1, Т2], конденсаторов С4 - С6 [C4, С3], резисторов R8 - R16. В силовой схеме триаки V21 - V23 [V21, V22] коммутируют напряжение, от которого осуществляется электрическое

План
Содержание

Введение

1 Теоретическое обоснование разработки микропроцессорной системы управления подачей воздуха в термотравильный агрегат ТТА №3

1.1 Общая характеристика цеха №1 ООО «Спецтехнологии»

1.2 Общая характеристика технологического процесса нагрева проволоки в термотравильном агрегате ТТА №3. Задачи автоматизации

1.3 Описание функциональной схемы автоматизации термотравильного агрегата

1.4 Принципы выбора типовых элементов САУ

2 Расчетное обоснование выбора элементов автоматики разрабатываемой системы управления подачей воздуха в термотравильный агрегат

2.1 Выбор типовых элементов, входящих в разрабатываемую систему управления подачей воздуха

2.1.1 Выбор первичного датчика

2.1.2 Выбор регулирующего устройства

2.1.3 Выбор усилителя

2.1.4 Выбор блока ручного управления

2.2 Выбор сужающего устройства

2.3 Расчет и выбор регулирующего органа

2.4 Расчет и выбор исполнительного механизма

2.5 Описание принципиальной схемы системы управления подачей воздуха в термотравильный агрегат ТТА №3

3 Охрана труда и промышленная безопасность

3.1 Описание опасных и вредных производственных факторов в цехе

3.2 Мероприятия по охране труда при работе в электроустановках

4 Организационно-экономическая часть

4.1 Организация работ на участке КИП и А 4.2 Расчет капитальных и эксплуатационных затрат для САУ подачи воздуха

Заключение

Список используемых источников

Введение
Автоматизация технологического процесса - совокупность методов и средств, предназначенная для реализации системы или систем, позволяющих осуществлять управление самим технологическим процессом без непосредственного участия человека, либо оставления за человеком права принятия наиболее ответственных решений.

Основа автоматизации технологических процессов - это перераспределение материальных, энергетических и информационных потоков в соответствии с принятым критерием управления (оптимальности).

Основными целями автоматизации технологического процесса являются: - Повышение эффективности производственного процесса.

- Повышение безопасности.

- Повышение экологичности.

- Повышение экономичности.

Металлокорд представляет собой трос , свитый из стальной латунированной проволоки . Металлокорд применяется в качестве армирующего материала при производстве различных резинотехнических изделий: конвейерных лент, клиновидных ремней, шлангов высокого давления и т. д. Но самое широкое применение металлокорд нашел при производстве автомобильных и других резиновых шин. Шины , армированные металлокордом, имеют ходимость в 1,5 - 2 раза выше, чем шины, армированные хлопчатобумажным кордом.

Актуальность темы дипломного проекта в том, что применение автоматизированных систем в производстве металлокорда способствует повышению качества продукции, понижению издержек производства и расходов на техническое обслуживание систем автоматизации.

Целью дипломного проекта является разработка микропроцессорной системы управления подачей воздуха в термотравильный агрегат ТТА№3 цеха №1 ООО «Спецтехнологии»

Задачи дипломного проекта: 1. Описать технологический процесс нагрева проволоки, а также описать функциональную схему автоматизации термотравильного агрегата.

2. Выбрать элементы автоматики для САУ подачей воздуха в термотравильный агрегат и на основе выбранных элементов автоматики разработать принципиальную электрическую схему.

3. Описать опасные и вредные производственные факторы в цехе и мероприятия по охране труда при работе в электроустановках.

4. Выполнить расчет капитальных и эксплуатационных затрат для САУ подачей воздуха.

1 Теоретическое обоснование разработки микропроцессорной системы управления подачей воздуха в термотравильный агрегат №3 термотравильный агрегат микропроцессорный

1.1 Общая характеристика цеха №1 ООО «Спецтехнологии»

Цех №1 ООО «Спецтехнлогии» предназначен для производства металлокорда. Данный цех включает в себя канатный участок, участок тонкого волочения, термотравильный участок, участок грубо-среднего волочения, термотравильно - гальванический участок, участок сортировки, упаковки и отгрузки. В цеху осуществляются производственные операции по подготовке и производству металлокорда. Операции включают в себя травление катанки, грубое волочение, патентирование, охлаждение проволоки в расплаве селитры, охлаждение и промывку проволоки после ванны с расплавом селитры, химическое травление, нанесение покрытий, сушку проволоки, среднее волочение, тонкое волочение, намотку проволоки, окончательный контроль и отгрузку.

1.Травление катанки

Травление катанки производится в двух ваннах предварительного и окончательного травления. В зависимости от состава раствора травления, травильная ванна сначала является ванной окончательного травления, затем, по мере накопления сульфата железа и снижения концентрации серной кислоты, становится ванной предварительного травления. После травления с целью удаления травильного шлама и остатков кислоты, катанка промывается водой методом окунания, а затем душирования с подачей воды под давлением от 3 до 7 атм.

2. Волочение катанки

Бунты травленой катанки навешиваются на размоточное устройство с помощью кран-балки. Размотка катанки осуществляется с горизонтально-размоточного устройства, позволяющего производить непрерывную подачу катанки в волочильный стан с помощью сварки конца вырабатываемого конца мотка катанки с началом нового. Заправка маршрута волочения стана производится при полной или частичной замене волок, при обрыве проволоки, на заправочной скорости («тихий ход»). Волочение проволоки производится на твердосплавных волоках. Место сварки проволоки пропускается по всему маршруту волочения на заправочной скорости, после чего стан переводится на рабочую скорость волочения. Наматывание проволоки производится на металлические катушки или в бухты.

3. Патентирование

Печь патентирования предназначена для термообработки проволоки с целью восстановления структуры и механических свойств металла, измененных после операции волочения. Нагрев заготовки производится в 24 ниточных печах малоокислительного нагрева. Проволока протягивается через рабочее пространство печи по каналам или по поду печи. Для обеспечения минимально возможного окисления проволоки при нагреве необходимо в рабочем пространстве печи поддерживать соотношение расхода «газ-воздух». Регулирование соотношения «газ-воздух» осуществляется путем изменения расхода горячего воздуха, подаваемого на горелки зоны догрева. Маршрут прохождения проволоки внутри патентировочной печи должен обеспечивать прямолинейность проволоки, отсутствие перекрещивания и переплетения нитей проволок.

4. Охлаждение проволоки в расплаве селитры

Охлаждение нагретой в печи проволоки осуществляется в расплаве селитры, с целью получения требуемой микроструктуры металла, необходимой для обеспечения последующего волочения. Нагрев и поддержание заданной температуры расплава селитры осуществляется тепловыми электронагревателями, а также за счет тепла, вносимого проволокой из печи. Прохождение проволоки в охлаждающей ванне с расплавом селитры должно обеспечивать одинаковое расстояние между нитями проволоки, прямолинейность проволоки и отсутствие касания нитей между собой.

5. Охлаждение и промывка проволоки после ванны с расплавом селитры

После выхода из ванны с расплавом селитры проволока охлаждается и промывается в двух последовательно расположенных ваннах для удаления с ее поверхности остатков селитры. Далее проволока поступает в ванну химического травления.

6. Химическое травление

Снятие окалины, загрязнений и подготовка поверхности проволоки перед нанесением покрытия осуществляется химическим травлением в растворе серной кислоты. Для интенсификации процесса травления травильный раствор подогревается паром, проходящим через теплообменники.

7. Нанесение покрытий

Фосфатирование заготовки производится с целью образования на ее поверхности подсмазочного слоя (для процесса мокрого волочения), состоящего из фосфатов цинка и железа. Фосфатирование проволоки производится в переливной ванне. Нити проволоки должны быть полностью погружены в раствор фосфатирования.

Известкование фосфатированной заготовки производится с целью нейтрализации остатков кислоты на поверхности проволоки и нанесения дополнительного подсмазочного слоя для улучшения процесса мокрого волочения.

Бурирование заготовки производится для нейтрализации остатков кислоты на поверхности проволоки и для создания подсмазочного слоя, являющегося наполнителем и закрепителем смазки при сухом волочении проволоки, для обеспечения снижения трения при протяжке и предотвращение прилипания металла к поверхности рабочей зоны волоки.

8. Сушка проволоки

Сушка проволоки является завершающей операцией подготовки поверхности проволоки к среднему и тонкому волочению. Сушило предназначено для удаления остатков влаги с движущейся проволоки перед намоточным аппаратом для предотвращения ее ржавления. Сушка проволоки осуществляется в протяжных электрических сушилах горячим воздухом.

9. Намотка проволоки

Намоточное устройство предназначено для протяжки стальной проволоки через все стадии процесса патентирования и подготовки поверхности к волочению и намотки патентированной проволоки на металлические технологические катушки.

Намотка заготовки производится на катушки емкостью 1000 кг. На вытяжном барабане должно быть не менее двух витков проволоки. Проскальзывание проволоки недопустимо. Намотка проволоки регулируется так, чтобы обеспечить равномерное распределение проволоки ровными рядами по всей ширине катушки. Не допускается перепутывания витков и образования выпуклостей и впадин.

Далее готовая проволока проходит визуальный осмотр на наличие дефектов и поступает в отсек отгрузки потребителю.

1.2 Общая характеристика технологического процесса нагрева проволоки в термотравильном агрегате ТТА №3. Задачи автоматизации термотравильного агрегата

Основными задачами автоматизации являются повышение эффективности производственного процесса и его безопасности.

В производственном цехе №1 ООО «Спецтехнологии» установлена безмуфельная печь, предназначенная для малоокислительного нагрева проволоки диаметром 0,8…2,1 мм и установлена в поточном агрегате №3.

По конструкции печь представляет собой туннель, выложенный из огнеупорного материала и заключенный в прочный газоплотный металлический каркас. Свод печи уплотнен металлическими съемными щитками, уложенными в песочные затворы. Вся печь установлена на ножках и находится выше уровня пола на 500 мм, что позволяет расположить воздуховоды под печью.

Через щель одновременно протягивается до 24-х ниток проволоки. Для равномерного размещения проволоки по ширине рабочего пространства и облегчения ее заправки, под печи выложен огнеупор в виде 12 каналов. В каждом канале располагается по 2 нитки проволоки.

Проволока нагревается непосредственно продуктами сгорания природного газа.

Рабочая камера печи по длине условно разделена на 2 тепловые зоны: зону нагрева и зону догрева.

Совмещенный процесс термической обработки и подготовки поверхности проволоки к волочению включает в себя следующие операции: - размотку проволоки с катушек;

- нагрев проволоки в печи: - охлаждение проволоки в расплаве селитры (патентирование);

- охлаждение проволоки на воздухе;

- промывка проволоки в ванне с проточной водой;

- травление проволоки в растворе серной кислоты;

- промывка проволоки в ванне с проточной водой;

- бурирование или фосфатирование (в зависимости от назначения проволоки);

- промывка проволоки после фосфатирования;

- нейтрализация остатков кислоты с поверхности проволоки в растворе извести после фосфатирования и нанесение подсмазочного слоя извести;

- сушка проволоки;

- намотка проволоки на катушки.

В зоне нагрева проволока нагревается от 20°С до 600…650°С в окислительной атмосфере, образующейся при дожигании продуктов неполного горения (полугаза), поступающего из зоны догрева.

В зоне догрева при температуре 950…1050°С происходит окончательный нагрев проволоки до рабочей температуры 900…920°С и выдержка ее при этой температуре. В этой зоне производится сжигание природного газа с расходом воздуха, что обеспечивает предохранение поверхности проволоки от окисления. В зону нагрева природный газ не подается. Для отопления зоны догрева применяется природный газ.

Продукты неполного сгорания из зоны догрева поступают в зону нагрева, где дожигаются и разбавляются до необходимой в этой зоне температуры посредством подачи в подсводовое пространство холодного воздуха. Холодный воздух подается в зону нагрева через 6 сопел диаметром 50 мм, равномерно расположенных по ширине печи.

Из зоны нагрева дымовые газы поступают в радиационно-конвективный рекуператор, служащий для нагрева вентиляторного воздуха, подаваемого на горелки зоны догрева. Дымовые газы из рекуператора через дымовую трубу выбрасываются в атмосферу.

Для поддержания и регулирования необходимого давления в рабочем пространстве печи в дымовой трубе после конвективной ступени рекуператора смонтирован поворотный шибер.

Применение радиационно-конвективного рекуператора, обеспечивает нагрев вентиляторного воздуха до 400…500°С, что необходимо для печей малоокислительного нагрева.

Кроме того, наряду с высоким тепловым КПД, такой комбинированный рекуператор имеет ряд преимуществ: газоплотность, жаростойкость, компактность.

Это дало возможность отказаться от традиционного расположения дымового канала под печью и установки рекуператора сбоку печи и позволило поместить рекуператор над печью, а трубопроводы горячего воздуха проложить под печью и сократить габариты печи.

Проволока перед печью располагается в катушках на размоточных устройствах, проходит печь развернутой нитью, попадает в селитровую ванну длиной 8000 мм, проходит через промывочную ванну, затем ванну травления, где травится кислотой при температуре 78…80°С, снова в ванну промывки, далее в ванну бурирования, после чего она охлаждается в струях холодной воды, сушится в электросушилке и наматывается на катушки намоточного аппарата ВСП 7/600.

1.3 Описание функциональной схемы автоматизации термотравильного агрегата ТТА №3

Функциональная схема термотравильного агрегата представлена на демонстрационном листе ДП.220703.15 15.АТХ-1

Данной схемой предусмотрен контроль и регулирование следующих технологических параметров: - контроль температуры отходящих газов осуществляется с помощью термоэлектрического преобразователя температуры ТХК. Сигнал с датчика передается на микропроцессорный контроллер Simatic S7-300;

- регулирование соотношения «газ-воздух» осуществляется путем изменения расхода горячего воздуха и расхода газа. Для измерения расхода применяют датчик Метран-100ДД. Сигнал с датчика передается на микропроцессорный контролер Simatic S7-300;

- регулирование температуры зоны нагрева осуществляется путем изменения расхода холодного воздуха, подаваемого в подсводовое пространство печи. Для измерения температуры применяют термоэлектрический преобразователь ТПР. Сигнал с датчика передается на микропроцессорный контроллер устройство Simatic S7-300;

- регулирование температуры в зоне догрева, осуществляется путем изменения расхода газа и горячего воздуха. Для измерения температуры применяют термоэлектрический преобразователь ТПР. Сигнал с датчика передается на микропроцессорный контроллер Simatic S7-300;

- контроль расхода холодного воздуха осуществляется с помощью датчика Метран-100ДД. Сигнал с датчика передается на микропроцессорный контроллер Simatic S7-300;

- контроль температуры селитровой ванны, ванны травления и ванны фосфатирования осуществляется с помощью термоэлектрического преобразователя ТХК. Сигнал с датчика передается на микропроцессорный контроллер Simatic S7-300;

- контроль температуры электросушилки осуществляется с помощью термоэлектрического преобразователя температуры ТХК. Сигнал с датчика передается на микропроцессорный контроллер Simatic S7-300;

- регулирование давления газа в левом и правом коллекторе. Для измерения давления применяют датчик Метран-100ДД. Сигнал с датчика передается на регулирующее устройство Simatic S7-300;

- регулирование давления воздуха в левом и правом коллекторе. Для измерения давления применяют датчик Метран-100ДД. Сигнал с датчика поступает на микропроцессорный контроллер регулирующее устройство Simatic S7-300;

-регулирование давления воздуха и газа перед печью. Для измерения давления применяют датчик Метран-100ДД. Сигнал с датчика передается на микропроцессорный контроллер Simatic S7-300.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?