Требования к комплексной скважинной аппаратуре. Анализ методов измерения влажности и температуры нефти. Построение принципиальной схемы канала и анализ его погрешностей. Расчет основных компонентов схемы. Разработка конструкции первичных преобразователей.
Геофизические исследования скважин являются областью прикладной геофизики, в которой современные физические методы исследования вещества используются для геологического изучения резервов, пройденных скважинами, выявления оценки запасов полезных ископаемых, получения информации о ходе разработки месторождений и о техническом состоянии скважин. Применительно к изучению резервов нефтяных и газовых скважин эти исследования называют промысловой геофизикой. В современном понятии обозначает совокупность геофизических работ на скважинах - скважинную геофизику или геофизические исследования скважин. Геофизические исследования в скважинах выполняются с помощью специальных установок, называемых промыслово-геофизическими (каротажными) станциями.Под комплексной скважинной аппаратурой понимается совокупность измерительных устройств, предназначенных для определения физических величин и параметров в скважинах. В состав аппаратуры в общем случае входят скважинный прибор и наземные блоки, соединенные геофизическим кабелем. Одним из требований разработки скважинной геофизической аппаратуры, вытекающих из условий ее эксплуатации, является максимальное упрощение части измерительной схемы, опускаемой в скважину в процессе исследований. Так сигнал, поступающий с датчика или приемника зонда, часто имеет небольшую мощность или вид, неудобный для передачи по кабелю, поэтому возникает необходимость соответствующего преобразования сигнала с помощью устройств, сосредоточенных в скважинном приборе. При эксплуатации аппаратура и ее отдельные блоки находятся под воздействием различных факторов (нагрузок).Разрабатываемый канал должен удовлетворять следующим требованиям: 1) Разрабатываемый модуль измерения температуры и содержания воды в нефти предназначен для работы в составе комплексной скважинной аппаратуры. 2) Диапазон измерения температуры, ?С 0...120 4) Погрешность измерения температуры: а) основная погрешность, ?С ±0,05 б) дополнительная температурная погрешность, ?С/?С 5) Погрешность измерения влагосодержания: а) основная погрешность ±0,05 б) дополнительная температурная погрешность, 1/ ?СПри использовании равновесных методов измерения сводятся к определению влажности газовой фазы, находящейся в подвижном гигротермическом равновесии с жидкостью, содержащей влагу. При использовании испарительного метода определение содержания влаги в жидкости подменяется определением ее в газе, для чего пробу влажной жидкости полностью выпаривают. Этот метод позволяет пользоваться любым типом влагомера для газов; он пригоден для измерения влажности низкокипящих жидкостей, упругость паров которых при температуре окружающего прибор воздуха не превышает рабочего давления данного влагомера (0,07 до 1,0 МПА) - фторированных углеводородов (фреона), сжиженного нефтяного газа, жидкого пропана и др. В выделительных влагомерах влагу сначала выделяют из контролируемой жидкости тем или иным способом (дистилляция, экстрагирование жидкостью, вымывание газом), после чего прямо или косвенно определяют содержание воды в отгоне или экстракте. Физические (прямые) методы характеризуются тем, что содержание воды в контролируемой жидкости определяют измерением значений каких-либо однозначно зависящих от влажности, физических свойств непосредственно самой жидкости, без выделения из нее влаги.В связи с этим большую роль играют технические и, прежде всего, метрологические характеристики применяемых средств измерения температуры. К важнейшим метрологическим характеристикам относятся: - погрешность измерения температуры (во всем диапазоне условий эксплуатации); Улучшение указанных характеристик позволит не только повысить точность измерений температуры и термоградиента, но и повысить метрологическую надежность средств измерений и достоверность получаемой измерительной информации. В термоизмерительных приборах метрологические характеристики прибора в целом определяются главным образом характеристиками первичного измерительного преобразователя (датчика) температуры. В последние годы для измерения температур от-80 до 250?С все более широкое распространение получают кварцевые термопреобразователи, отличающиеся высокой разрешающей способностью и имеющие частотный выходной сигнал, хорошо защищенный от помех и легко преобразуемый в цифровой код.Комплексная скважинная аппаратура контроля технического состояния скважин и разработки нефтяных месторождений ГЕОПАЛС КСП 16 (далее аппаратура) предназначена для работы в совокупности с каротажной станцией и геофизическим подъемником и позволяет осуществлять геологотехнологический контроль состояния скважин и контроль разработки нефтяных месторождений. Контроль технического состояния скважин и контроль разработки нефтяных месторождений осуществляется путем измерения и передачи по каротажному кабелю телеметрической информации о температуре, давлении, влагосодержании и электрической проводимости флюида, магнитных неоднородностях (локация муфт), интенсивности притоков (термокондуктивная индикация притоков), гамма-активности, геохимических параме
План
Содержание
Введение
1. Анализ технического задания. Выбор методов измерений
1.1 Требования к комплексной скважинной аппаратуре
2.2 Структурная схема каналов измерения температуры и влажности
2.3 Выбор основных узлов
3. Разработка принципиальной схемы
3.1 Вывод функции преобразования датчика влажности
3.2 Разработка принципиальной схемы преобразователя емкости в период
3.3 Разработка принципиальной схемы преобразователя сопротивления в напряжение
3.4 Режим работы ADUC 834
4. Математические модели измерительных каналов
4.1 Математическая модель первичного преобразователя температуры
4.2 Математическая модель канала измерения содержания воды в нефти
5. Анализ погрешностей
5.1 Основная погрешность канала измерения температуры
5.2 Дополнительная погрешность канала измерения температуры
5.3 Основная погрешность канала измерения влажности
5.4 Дополнительная погрешность влагомера
6. Разработка конструкции
6.1 Разработка конструкции для первичного преобразователя температуры 56
6.2 Разработка конструкции первичного преобразователя влагомера
7. Технико-экономическое обоснование
7.1 Оценка экономической эффективности проекта
7.1.1 Расчет затрат и стоимости проекта
7.1.2 Расчет количества и стоимости сырья, основных материалов и покупных изделий
7.1.3 Расчет трудоемкости и тарифной заработной платы производственных рабочих
7.1.4 Расчет себестоимости
7.2 Расчет ожидаемой экономической эффективности
7.2.1 Расчет общих капитальный вложений в проектируемый канал
7.2.2 Смета эксплуатационных расходов
7.2.3 Срок окупаемости
8. Обеспечение безопасности жизнедеятельности
8.1 Требования к оборудованию, аппаратуре и техническим средствам
8.2 Меры безопасности при эксплуатации скважинного прибора
8.3 Правила эксплуатации, хранения и транспортировки
Заключение
Список использованных источников
Введение
Геофизические исследования скважин являются областью прикладной геофизики, в которой современные физические методы исследования вещества используются для геологического изучения резервов, пройденных скважинами, выявления оценки запасов полезных ископаемых, получения информации о ходе разработки месторождений и о техническом состоянии скважин.
Применительно к изучению резервов нефтяных и газовых скважин эти исследования называют промысловой геофизикой. Кроме того, в практике используется термин «каротаж». Каротаж (фр.) - исследование литосферы методами создания (бурение или продавливание) специальных зондировочных скважин и проведения измерений при прохождении электрическими, магнитными, радиоактивными, акустическими и другими методами. В современном понятии обозначает совокупность геофизических работ на скважинах - скважинную геофизику или геофизические исследования скважин.
Геофизические исследования в скважинах выполняются с помощью специальных установок, называемых промыслово-геофизическими (каротажными) станциями.
В последние годы значительно увеличились глубины скважин, значительно усложнились условия их проходки. Это потребовало создания новых высокопроизводительных приборов и аппаратуры на основе достижений электронной техники и широкого внедрения обработки геофизических данных на ЭВМ.
Разработана комплексная скважинная аппаратура - агрегатированная система геофизических скважинных приборов, рассчитанных на высокие давления и температуры. Она содержит несколько модулей, каждый из которых измеряет определенный параметр [1]. Целью данной работы является разработка одного из таких модулей, а именно, канала измерения содержания воды в нефти и канала измерения ее температуры.
Влажность нефти является одним из важнейших технологических параметров. На разных этапах добычи и подготовки нефти она определяет правильность эксплуатации нефтяного пласта, интенсивность эмульгирования водонефтяной смеси в процессе ее перекачки, эффективность процессов деэмульсации и качество товарной нефти, поступающей на переработку. С влагосодержанием тесно связано также содержание солей, которые причиняют немалый вред оборудованию нефтеперерабатывающих заводов.
1
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы