Исследование и анализ особенностей исполнительных электромашин современных опорно-поворотных устройств, оказывающих влияние на конечную точность прецизионного электропривода. Особенности инверторов напряжения, питающих обмотки исполнительного двигателя.
При низкой оригинальности работы "Разработка алгоритмов эффективного управления прецизионными электроприводами комплексов высокоточных наблюдений", Вы можете повысить уникальность этой работы до 80-100%
Разработка алгоритмов эффективного управления прецизионными электроприводами комплексов высокоточных наблюденийРабота выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики». Ульянова», кафедра робототехники и автоматизации производственных систем, профессор. кандидат технических наук, профессор Семенов Игорь Михайлович, ФГБОУВПО «Санкт-Петербургский государственный политехнический университет», кафедра систем и технологий управления, заведующий кафедрой. Защита состоится «26» апреля 2013 г. в 14 часов 30 минут на заседании диссертационного совета Д 212.224.07 при Национальном минерально-сырьевом университете «Горный» по адресу: 199106 Санкт-Петербург, 21-я линия, д.2, ауд.1166.Идея работы заключается в применении алгоритмов управления прецизионными электроприводами ТТИ, компенсирующих нелинейности исполнительной электрической машины и усилительно-преобразовательного устройства (УПУ) с целью повышения точности позиционирования и сопровождения современных оптико-электронных комплексов контроля космического пространства. Научная новизна работы заключается в разработке эффективных алгоритмов управления прецизионными электроприводами ТТИ, позволивших компенсировать нелинейности элементов энергоподсистемы и повысить точность позиционирования и сопровождения космических объектов. прецизионный электропривод питающий обмотка Разработанные аналитические модели электропривода, учитывающие нелинейности УПУ и электрической машины, в отличие от имитационных моделей, которые широко распространены благодаря математическим пакетам моделирования, позволяют впоследствии разрабатывать эффективные алгоритмы управления прецизионным электроприводом, а также проводить достоверную техническую диагностику электрических параметров машины и качества изготовления подвижных частей ОПУ ТТИ. Разработка математических моделей, позволяющих анализировать влияние всех рассматриваемых нелинейностей, вносимых исполнительной электрической машиной и УПУ, на конечную точность позиционирования прецизионных электроприводов и осуществлять выбор наиболее эффективных алгоритмов управления. Математические модели электропривода, учитывающие нелинейности, вносимые исполнительной электрической машиной и УПУ, позволяющие анализировать их влияние на конечную точность позиционирования прецизионных электроприводов и осуществлять выбор наиболее эффективных алгоритмов управления.В диссертации, представляющей собой законченную научно-квалификационную работу, содержится решение задачи повышения точности позиционирования и сопровождения оптическими телескопами космических объектов с применением алгоритмов эффективного управления прецизионными электроприводами опорно-поворотных устройств телескопов траекторных измерений. Произведен анализ характерных особенностей исполнительных электромашин современных опорно-поворотных устройств, оказывающих влияние на конечную точность прецизионного электропривода.
План
Основное содержание диссертации опубликовано
В изданиях, рекомендованных ВАК Минобрнауки России: 1. Арановский С.В., Ловлин С.Ю., Александрова С.А. Метод идентификации электромеханической системы при переменном моменте трения // Информационно-управляющие системы. - 2012. - Вып.1 (56). - С. 8-11.
2. Ловлин С.Ю., Цветкова М.Х., Жданов И.Н. Программируемый формирователь траектории движения следящего электропривода // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. - 2011. - Вып. 2 (72). - С. 113-117.
4. Демидова Г.Л., Ловлин С.Ю., Цветкова М.Х. Синтез следящего электропривода азимутальной оси телескопа с эталонной моделью в контуре положения // Вестник ИГЭУ. - 2011. - Вып. 2. - С. 77-81.
6. Томасов В.С., Ловлин С.Ю., Егоров А.В. Алгоритмы компенсации пульсаций момента прецизионного электропривода на базе синхронной машины с постоянными магнитами // Научно-технический вестник информационных технологий, механики и оптики. - 2013. - Вып. 2. - С. 77-83.
7. Ловлин С.Ю., Арановский С.В., Смирнов Н.А., Цветкова М.Х. Сравнение различных подходов к построению линейных систем управления прецизионными электроприводами // Приборы и системы. Управление, контроль, диагностика. - 2013. - Вып. 3. - С. 32-39.
В прочих изданиях: 8. Ловлин С.Ю., Цветкова М.Х. Алгоритм настройки контура тока с учетом нелинейности усилительно-преобразовательной системы // Труды VII Международной (XVIII Всероссийской) конференции по автоматизированному электроприводу: ФГБОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина». - Иваново, 2012. - С. 213-216.
9. Ловлин С.Ю., Цветкова М.Х. Компенсация ошибки подразбиения датчика угловых перемещений типа Renishaw в прецизионных электроприводах // Альманах научных работ молодых ученых XLI научной и учебно-методической конференции НИУ ИТМО. - СПБ.: НИУ ИТМО, 2012. - С. 143-148.
11. Ловлин С.Ю., Цветкова М.Х. Влияние точности установок головок оптического датчика Renishaw на конечную точность позиционирования следящей оси телескопа // Сборник тезизов докладов конгресса молодых ученых. Труды молодых ученых. - СПБ.: НИУ ИТМО, 2012. - Вып. 2. - С. 277-278.
12. Ловлин С.Ю., Цветкова М.Х. Выбор электродвигателя для системы управления телескопа траекторных измерений, находящегося на подвижном основании // Сборник тезисов докладов I Всероссийского конгресса молодых ученых. - СПБ.: НИУ ИТМО, 2012. - Вып. 2. - С. 286-287.
13. Салов Д.И., Ловлин С.Ю. Следящий электропривод гелиоустановки // Сборник тезисов докладов конгресса молодых ученых. Труды молодых ученых. - СПБ.: НИУ ИТМО, 2012. - Вып. 2. - С. 281.
14. Тушев С.А., Ловлин С.Ю. Информационная подсистема цифрового электросилового привода с компенсацией пульсаций момента вентильного двигателя // Сборник тезисов докладов конференции молодых ученых. - СПБ.: СПБГУ ИТМО, 2011. - Вып. 2. - С. 250-251.
15. Цветкова М.Х., Ловлин С.Ю. Коэффициент использования источника питания по напряжению при различных способах ШИМ // Сборник тезисов докладов конференции молодых ученых. - СПБ.: СПБГУ ИТМО, 2011. - Вып. 2. - С. 239-240.
16. Егоров А.В., Ловлин С.Ю. Особенности структур энергоподсистем с большими маховыми массами // Сборник тезисов докладов конференции молодых ученых. - СПБ.: СПБГУ ИТМО, 2011. - Вып. 2. - С. 241-242.
17. Цветкова М.Х., Ловлин С.Ю. Исследование адаптивных алгоритмов управления следящих электроприводов // Сборник тезисов докладов конференции молодых ученых. - СПБ.: СПБГУ ИТМО, 2010. - Вып. 5. - С. 28-29.
18. Ловлин С.Ю., Цветкова М.Х. Планирование траектории следящего электропривода с ограничением скорости и ускорения // Сборник тезисов докладов конференции молодых ученых. - СПБ.: СПБГУ ИТМО, 2010. - Вып. 5. - С. 20-21.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы