Рассеяние электронной плотности в металлах и ионных кристаллах по рентгенографическим данным - Дипломная работа

бесплатно 0
4.5 174
Свойства объектов и методы измерения электронной плотности по упругому рассеянию. Экспериментальные методы исследования комптоновского рассеяния. Атомно-рассеивающий фактор, распределение радиальной электронной плотности в литии по комптоновским профилям.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Экспериментальные исследования распределения электронных плотностей в кристаллах по данным рентгено - и нейтронографических измерений в последние годы значительно расширились. Этому способствует, во-первых, то обстоятельство, что получаемые карты распределения электронных плотностей в кристаллах дают возможность не только качественно судить о характере связи, но и количественно определять ряд физических свойств кристаллов. Очевидно, что функция распределения электронной плотности в кристалле - не только важнейшая характеристика особенности химической связи, но и непосредственно количественно связана с волновой функцией, являясь квадратом ее модуля. Поэтому определение распределения электронной плотности различными способами - по данным рассеяния рентгеновских лучей и электронов, методами ядерного гамма-резонанса, по комптоновским профилям и другими методами - важнейшая задача экспериментального исследования химической связи и представляет собой экспериментальную основу квантовой химии. Наиболее прямые методы нахождения функции распределения электронной плотности в кристаллах по рассеянию рентгеновских лучей, электронов и нейронов приводят к достаточно надежным результатам лишь для кристаллов, для которых первые бреговские рефлексы лежат при сравнительно малых значениях вектора обратной решетки.Металлический литий впервые выделен английским ученым Дэви в 1818 г. электролизом оксида лития. В промышленности металлический литий получают путем электролиза расплавленного хлорида лития или смеси расплавленных хлорида лития и хлорида калия с применением графитированного анода и стального катода. Литий высокой чистоты (99,95%), почти свободный от примесей щелочных и щелочноземельных металлов, получают электролизом насыщенного раствора LICL в пиридине, разложением соединения NH3Li в вакууме при 50-60 °С и восстановлением окиси лития алюминием в вакууме (примерно 10-1 Па) при 950-1000°С. Из щелочных металлов Li обладает наименьшим атомным радиусом - 0,157 нм, а следовательно, наибольшим ионизационным потенциалом = 5,39 ЭВ, поэтому литий химически менее активен по сравнению с другими щелочными металлами. Благодаря малому атомному радиусу литий обладает наиболее прочной кристаллической решеткой по сравнению с остальными щелочными металлами.Химическая связь между атомами в кристаллах возникает за счет взаимодействия внешних валентных электронов атомов, тогда как внутренние электронные оболочки практически остаются неизменными. Природа металлической связи та же, что и ковалентной, т. е. обобществление внешних валентных электронов атомов, однако характер локализации этих электронов иной - они приблизительно равномерно заполняют все межатомное пространство, образуя общий электронный "газ", который и осуществляет коллективное взаимодействие с заряженными положительно атомами металла (рис. В работе о распределении электронной плотности и потенциала в решетке селенида марганца описывается разностный метод расчета электронной плотности.[4] В качестве исследуемого вещества выбран селенид марганца. По полученным данным f-функций подсчитывалась электронная плотность в решетке MNSE между ионами марганца и селена с использованием разностного метода синтеза трехмерного ряда Фурье: [7] Расчеты электронной плотности показали (рис, 1.2.4), что в направлении [100] между ближайшими ионами Mn-Se минимальное значение плотности электронов составляет примерно 0,15 эл/А3 и в направлении [110] между ионами Mn-Mn оно падает практически до нуля.Джансей и более строго Дю-Монд объяснили это расхождение влиянием не учитываемого ранее начального распределения электронов по импульсам. Пусть ?1, k1 и ?2, k2 - соответственно частота и волновой вектор падающего и рассеянного излучений; тогда величины ? = ?1 - ?2 и k = k1 - k2 определяют энергию и импульс, передаваемые среде в единичном акте рассеяния. Энергетическое смещение комптоновской линии задается первым членом в (2.1.2), а второе слагаемое описывает доплеровское уширение линии, определяемое проекцией q импульса р1 па ось k. Так как k1 = ?1/c = 2?/?1 и k = 2k1sin( /2), то из (2.1.2) следует известное соотношение Комптона для положения центра линии КЭ на свободных не взаимодействующих электронах: (2.1.3) где - угол рассеяния (угол между направлениями k2 и k1). Тем самым было показано, что частотный комптоновский профиль несет информацию о функции одномерного (в проекции на k) распределения электронов по импульсам.Это в основном связано с необходимостью применения кристалла - анализатора для отделения некогерентного излучения от остального фона. Второй метод заключается в определении полного диффузного рассеяния без применения кристалла анализатора. Третий метод заключается в том, что на рассеивающее вещество направляется весь полихроматический луч, а рассеянное излучение анализируется при помощи кристалла анализатора. Точность определения комптоновского профиля в свою очередь зависит от многих факторов, например, таких как соблюдение геометрии хода лучей, точности определения угла кристалл

План
Содержание

Введение

Глава 1. Свойства исследуемых объектов и методы измерения электронной плотности по упругому рассеянию

1.1 Свойства исследуемых объектов

1.2 Методы измерения электронной плотности по упругому рассеянию

Глава 2. Неупругое рассеяние рентгеновских лучей веществом

2.1 Импульсная аппроксимация

2.2 Экспериментальные методы исследования комптоновского рассеяния

2.3 Атомно - рассеивающий фактор и распределение радиальной электронной плотности в литии по комптоновским профилям

Глава 3. Методика измерений и обработки результатов

3.1. Подготовка образцов и методика измерений

3.2 Методика обработки дифракционных максимумов

3.3 Анализ результатов эксперимента

Заключение

Список используемой литературы

Введение
Экспериментальные исследования распределения электронных плотностей в кристаллах по данным рентгено - и нейтронографических измерений в последние годы значительно расширились. Этому способствует, во-первых, то обстоятельство, что получаемые карты распределения электронных плотностей в кристаллах дают возможность не только качественно судить о характере связи, но и количественно определять ряд физических свойств кристаллов. Метод определения физических свойств кристаллов по рентгенографическим данным распределения электронных плотностей в кристаллах, предположенный и развитый институтом физики твердого тела и полупроводников Академии наук Беларуси, находит широкое признание и используется во многих исследовательских центрах. Во-вторых, успешному развитию исследований природы химической связи рентгено - и нейронографическими методами в последнее время способствует значительное повышение точности абсолютных измерений интенсивности дифракционных рефлексов и определение кривых атомнорассеивающих факторов.

Очевидно, что функция распределения электронной плотности в кристалле - не только важнейшая характеристика особенности химической связи, но и непосредственно количественно связана с волновой функцией, являясь квадратом ее модуля. Поэтому определение распределения электронной плотности различными способами - по данным рассеяния рентгеновских лучей и электронов, методами ядерного гамма-резонанса, по комптоновским профилям и другими методами - важнейшая задача экспериментального исследования химической связи и представляет собой экспериментальную основу квантовой химии.

Проблема восстановления волновой функции, достаточно точно описывающей действительное распределение электронов в кристалле и, следовательно, особенности межатомной химической связи, до сих пор не может считаться полностью решенной. Наиболее прямые методы нахождения функции распределения электронной плотности в кристаллах по рассеянию рентгеновских лучей, электронов и нейронов приводят к достаточно надежным результатам лишь для кристаллов, для которых первые бреговские рефлексы лежат при сравнительно малых значениях вектора обратной решетки. Для кристаллов этого типа интенсивности первых рефлексов в значительной мере определяются самой внешней частью электронных орбиталей. Однако к данному типу относится скорее меньшинство, чем большинство кристаллов.

Для восстановления и уточнения волновых функций, характеризующих истинное распределение внешней части электронов, в ряде случаев удобно и целесообразно использование косвенных методов, непосредственно характеризующих не функции распределения внешних электронов, а функции распределения момента количества движения, энергии ионизации, плотности состояния по энергиям.

В первую очередь к числу подобных методов следует отнести изучение комптоновских профилей. Открытый Комптоном эффект, как показал ряд исследований, в особенности работы Вейсса и его сотрудников, - весьма удобный и мощный метод изучения проблем химической связи. Существенными факторами, ограничивающими возможности исследования комптоновских профилей для изучения особенностей межатомной химической связи, являются чрезвычайно малая их интенсивность, сложность исследования элементов с большим порядковым номером, большая поглощающая способность и др.

Использование данных измерений комптоновских профилей позволяет найти функцию распределения плотности моментов и электронной плотности кристаллов во внешних частях орбиталей атомов. Измерения рассеяния рентгеновских лучей, электронов и нейронов дают возможность определять распределение электронной плотности во внешних и в особенности в средних частях электронных оболочек.

Объектами исследования в настоящей работе являлись литий с ОЦК и алюминий с ГЦК кубическими решетками, а также бинарное соединение фторид лития со структурой хлорида натрия, предметом - интегральная интенсивность брегговских рефлексов, структурный множитель, функция атомного рассеяния, карты распределения электронной плотности для каждого объекта исследования при комнатной температуре.

Цель исследования - выяснить характер распределения электронной плотности в металлических и ионных кристаллах. Определить зависимость распределения электронной плотности от типа кристаллической решетки с металлической связью.

В соответствии с намеченной целью были поставлены следующие задачи исследования: 1. Систематизировать опыт исследований распределения электронной плотности и потенциала.

2. Рассмотреть методику определения интегральной интенсивности рефлекса исследуемых образцов.

3. Вычислить значения структурного и атомно-рассеивающего факторов лития, алюминия и фторида лития.

4. На основе экспериментальных данных построить карты распределения электронных плотностей лития, алюминия и фторида лития.

Новизна исследования: Существующая модель металла, где ионы погружены в электронную «жидкость», не отражает химическую связь атомов друг с другом. В модели ионных кристаллов недостаточно ясно распределение электронной плотности между ионами.

В связи с этим исследование распределения электронной плотности рентгенографическим методом является актуальной проблемой, требующей ее решения.

Объем и структура диссертации: Работа состоит из введения, литературного обзора, экспериментальной части, заключения, списка литературы и приложения. Работа изложена на 61 странице, включает в себя 32 рисунка, 8 таблиц, список литературы содержит 37 источников.

Положения, выносимые на защиту : O Методика и результаты расчета электронной плотности в металлах с различными типами решетки.

O Методика и результаты разделения атомнорассеивающих факторов разных сортов атомов в бинарном соединении.

O Построение карт электронной плотности и их анализ.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?