Расчет спектральных характеристик сигналов и каналов связи - Курсовая работа

бесплатно 0
4.5 110
Расчёт ширины спектра, интервалов дискретизации и разрядности кода. Автокорреляционная функция кодового сигнала и его энергетического спектра. Спектральные характеристики, мощность модулированного сигнала. Вероятность ошибки при воздействии "белого шума".

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
На современном этапе развития перед железнодорожным транспортом стоят задачи по увеличению пропускной и провозной способности, грузовых и пассажирских перевозок, уменьшению времени оборотов вагонов и повышению производительности труда. Эти задачи решаются по двум основным направлениям: техническим перевооружением транспортных средств и совершенствованием системы управления перевозочным процессом. Значительную роль в деле совершенствования системы управления эксплуатационной работой железнодорожного транспорта играет развитие всех видов связи, а также внедрение и поэтапное развитие комплексной автоматизированной системы управления железнодорожным транспортом (АСУЖТ). Управление территориально разобщенными объектами на всех уровнях осуществляется передачей сообщений разнообразными электрическими сигналами с широким использованием систем передачи информации, то есть систем связи, работающих по проводным и радиоканалам. Проблема эффективности системы передачи информации состоит в том, чтобы передать наибольшее или заданное количество информации (сообщений) наиболее экономически выгодным образом (с точки зрения затрат энергии и полосы частот) в заданное время.Аналитическая запись задаваемых сигналов во временной области имеет вид: а.) , (1.4) где ? - постоянная сигнала, 1/с; Данный сигнал имеет вид, представленный на рисунке 1.1, зависимость сведена в таблицу 1.1. Данный сигнал имеет вид, представленный на рисунке 1.2, зависимость сведена в таблице 1.2. Данный сигнал имеет вид, представленный на рисунке 1.3, зависимость сведена в таблице 1.3. Графики спектров и фазы сигналов, , , представлены на рисунке 1.4,рисунке 1.5, рисунке 1.6, рисунке 1.7, рисунке 1.8, рисунке 1.9 соответственно.Найдем полную энергию для каждого из сигналов , , , используя формулы (2.1) и (1.3, 1.4, 1.5), расчет производим в среде MATHCAD: В /c (2.2) Ограничение практической ширины спектра сигнала по верхнему значению частоты , по заданному энергетическому критерию осуществляется на основе неравенства: , (2.5) где - энергия сигнала с ограниченным вверху спектром. Значение определяется на основе известной плотности: , (2.6) где - искомое значение верхней граничной частоты сигнала. Найдем и для каждого из сигналов , , , учитывая (1.7), (1.8), (1.9), расчет производим в среде MATHCAD: В /c (2.7) рад/с Графики зависимости энергии сигналов от частоты приведены соответственно на рисунке 2.1, рисунке 2.2, рисунке 2.3.Интервал дискретизации заданного сигнала по времени определяется на основе теоремы Котельникова по неравенству: (3.1) где - верхнее значение частоты спектра сигнала, определяемое в соответствии с разделом 2.2.Разрядность кодов определяется исходя из динамического диапазона квантуемых по уровню импульсных отсчетов. При этом в качестве верхней границы динамического диапазона принимается напряжение самого большого по амплитуде отсчета. Для самого малого по амплитуде импульсного отсчета задается соотношение мгновенной мощности сигнала и мощности шума квантования: , (3.3) где - мощность шумов квантования при равномерной шкале квантования. Вычисляем при (согласно заданию): Вт. Вычисляем : Известно, что при использовании двоичного кодирования число кодовых комбинаций, равное числу уравнений квантования, определяется выражением: , (3.9) где - разрядность кодовых комбинаций.Функция автокорреляции показывает статистическую связь между временными сечениями сигнала. В общем случае функция автокорреляции (АКФ) четная по параметру t и определяется так: , (4.1) где T - длительность сигнала; В нашем случае вычисление функции автокорреляции выполним в среде MATHCAD, для этого возьмем первые четыре выборки кодовой последовательности, значения которых соответственно равны: 37, 11, 4, 1; преобразуем их в двоичный код и склеим. В среде MATHCAD создадим два вектора Vx и Vy в виде матрицы с 24 строками и одним столбцом и заполним их найденным кодом сигнала.График энергетического спектра кодового сигнала представлен на рисунке 5.1.Для передачи полезной информации в технике связи обычно используются модулированные сигналы. Процесс модуляции является нелинейной операцией и приводит к преобразованию спектра сигнала. (6.3) где W - частота первой гармоники полезного сигнала, - фаза n-ой гармоники, амплитуда несущей, , --амплитуда n-ой гармоники На рисунке 6.1 и рисунке 6.2 представлены графики кодовой последовательности для данного модулированного сигнала и самого модулированного сигнала.Такой источник имеет ряд информационных характеристик: количество информации в знаке, энтропию, производительность, избыточность. В дальнейшем нас будет интересовать производительность, которая характеризует скорость работы источника и определяется по следующей формуле: , (7.1) гиде - энтропия алфавита источника, бит/с; Напомним, что в непрерывном канале надо знать плотности распределения случайных процессов сигналов, помех и их же условные плотности распределения. Это понятие вводится при моделировании канала связи и с точки зрения передачи сообщений нет большого противоречия в

План
Содержание

Введение

1. Расчет спектральных характеристик сигнала

2. Расчет практической ширины спектра сигнала

2.1 Расчет полной энергии сигнала

3. Расчет интервала дискретизации и разрядности кода

3.1 Определение интервала дискретизации сигнала

3.2 Определение разрядности кода

4. Расчет автокорреляционной функции кодового сигнала

5. Расчет энергетического спектра кодового сигнала

6. Расчет спектральных характеристик модулированного сигнала

7.1 Согласование источника информации с каналом связи

7.2 Расчет вероятности ошибки в канале с аддитивным белым шумом

Заключение

Библиографический список

Введение
На современном этапе развития перед железнодорожным транспортом стоят задачи по увеличению пропускной и провозной способности, грузовых и пассажирских перевозок, уменьшению времени оборотов вагонов и повышению производительности труда. Эти задачи решаются по двум основным направлениям: техническим перевооружением транспортных средств и совершенствованием системы управления перевозочным процессом.

Значительную роль в деле совершенствования системы управления эксплуатационной работой железнодорожного транспорта играет развитие всех видов связи, а также внедрение и поэтапное развитие комплексной автоматизированной системы управления железнодорожным транспортом (АСУЖТ). Комплекс технических средств АСУЖТ включает в себя вычислительные центры Министерства путей сообщения, управлений дорог и отделений, связанные в единое целое сетью передачи данных.

Управление территориально разобщенными объектами на всех уровнях осуществляется передачей сообщений разнообразными электрическими сигналами с широким использованием систем передачи информации, то есть систем связи, работающих по проводным и радиоканалам. А также по волоконнооптическим линиям связи.

Совершенствование управления в условиях интенсификации производственных процессов ведет к росту общего объема информации, передаваемой по каналам связи между управляющими органами и управляемыми объектами.

Передача информации на железнодорожном транспорте ведется в условиях воздействия сильных и разнообразных помех. Поэтому системы связи должны обладать высокой помехоустойчивостью, что связано с безопасностью движения. К системам связи предъявляют также требования высокой эффективности при относительной простоте технической реализации и эксплуатации.

Проблема эффективности системы передачи информации состоит в том, чтобы передать наибольшее или заданное количество информации (сообщений) наиболее экономически выгодным образом (с точки зрения затрат энергии и полосы частот) в заданное время. Перечисленные проблемы тесно связанны между собой.

На рисунке показан канал для передачи непрерывных сообщений.

Разберем назначение блоков приведенного канала связи.

П-1, П1 - преобразователи сообщения в сигнал и наоборот - сигнала в сообщение.

Непрерывные сообщения можно передавать дискретными сигналами. Операция преобразования непрерывного сообщения в дискретное называется дискретизацией. Дискретизация осуществляется не только по времени, но и по уровням. Дискретизация значений функции (уровня) носит название - квантования.

Кодер сообщения формирует первичный код, каждое сообщение из ансамбля записывается им в форме двоичного представления. Декодер сообщения осуществляет обратную задачу. Собственно, на этом этапе преобразований сигнал можно передавать до потребителя, но в таком виде он будет не защищен от помех, и достоверность передачи будет низка. Поэтому далее идут преобразования, направленные на повышение помехоустойчивости канала.

Кодер канала по первичному коду формирует помехоустойчивый код. Здесь в код закладывается определенная избыточность, что позволяет в декодере канала обнаружить, либо исправить ошибки, возникшие при передаче.

Модулятор определяет вид сигнала, передаваемого по линии связи. Демодулятор выделяет принимаемый код по модулированному сигналу.

Рисунок 1 - Канал для передачи непрерывных сообщений

Разберем назначение блоков приведенного канала связи.

П-1, П1 - преобразователи сообщения в сигнал и наоборот - сигнала в сообщение.

Непрерывные сообщения можно передавать дискретными сигналами. Операция преобразования непрерывного сообщения в дискретное называется дискретизацией. Дискретизация осуществляется не только по времени, но и по уровням. Дискретизация значений функции (уровня) носит название - квантования.

Кодер сообщения формирует первичный код, каждое сообщение из ансамбля записывается им в форме двоичного представления. Декодер сообщения осуществляет обратную задачу. Собственно, на этом этапе преобразований сигнал можно передавать до потребителя, но в таком виде он будет не защищен от помех, и достоверность передачи будет низка. Поэтому далее идут преобразования, направленные на повышения помехоустойчивости канала.

Кодер канала по первичному коду формирует помехоустойчивый код. Здесь в код закладывается определенная избыточность, что позволяет в декодере канала обнаружить, либо исправить ошибки, возникшие при передаче. е

Модулятор определяет вид сигнала, передаваемого по линии связи. Демодулятор выделяет принимаемый код по модулированному сигналу.

Линия связи - это материальная среда для передачи сигналов (кабель, радио эфир). Именно здесь (в основном) к полезному сигналу добавляется непрогнозируемые помехи. Строя модулятор, демодулятор (модем), необходимо принять меры для борьбы с помехами.

Цифровой преобразователь (ЦАП) служит для восстановления сообщения.

Интерполятор позволяет по сигналу с ЦАП сформировать непрерывный сигнал.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?