Автомобильная промышленность. Самосвалы различной грузоподъемности. Применение механической разгрузки путем наклона кузова в сочетании с механической погрузкой экскаватором, транспортером или из бункера. Гидравлические подъемные механизмы и их схемы.
Для определения геометрических параметров звеньев системы соединим точку О шарнирного соединения платформы с рамой автомобиля точками О1 и О2 крепления гидроцилиндра к раме автомобиля и к платформе и определим углы a и f0 полученного треугольника, а также а также длину L гидроцилиндра в процессе выдвижения подвижных ступеней и плечо b действия силы F приложенной к платформе гидроцилиндром. Пользуясь теоремой косинусов определим первоначальные параметры платформы до ее подъема при задвинутых ступенях гидроцилиндра подставив значение L из выражения (1) в (2) получим: Плечо li действия силы от веса груза с платформой является переменной величиной, зависящей от угла f подъема платформы с грузом угол между радиусом и плечом действия силы от веса груза с платформой в исходном положении при опущенной платформе: где r радиус действия силы отвеса груза с платформой, определяемый по построению; Углы соответствующих усилий находим по формуле: а именно: УСИЛИЕF1= КН соответствует окончанию выдвижения второй ступени и началу выдвижения плунжера первой ступени гидроцилиндра;F2= КН соответствует окончанию выдвижения третьей ступени и началу выдвижения второй ступени; F3= КН соответствует началу выдвижения третьей ступени гидроцилиндра. Расчет давления p рабочей жидкости в телескопическом гидроцилиндре в зависимости от угла подъема платформы проводится для каждой выдвижной ступени с учетом ее площади по формуле: Pi=Fi/Ai где Fi усилие создаваемое гидроцилиндром в зависимости от угла подъема платформы; Для определения геометрических параметров звеньев системы соединим точку О шарнирного соединения платформы с рамой автомобиля точками О1 и О2 крепления гидроцилиндра к раме автомобиля и к платформе и определим углы ? и ?0 полученного треугольника, а также а также длину L гидроцилиндра в процессе выдвижения подвижных ступеней и плечо b действия силы F приложенной к платформе гидроцилиндром.№№ ПП Модель, тип насоса Робочий обєм, см3 Тиск МПА Подача ККД л/хв об/хв Обємний Загальний Нормальні лінійні розміри Під косою рискою наведені розміри посадочних місць для підшипників кочення.
Введение
Автомобили-самосвалы предназначены для массовых перевозок сыпучих и вязких грузов. Применение механической разгрузки путем наклона кузова в сочетании с механической погрузкой экскаватором, транспортером или из бункера позволяет значительно увеличить производительность автомобиля.
Автомобильная промышленность выпускает самосвалы различной грузоподъемности - от 2,25 т (ГАЗ-93А) до 40 т (БЕЛАЗ-548), причем все самосвалы (за исключением сверхтяжелых машин Белорусского и Могилсвского заводов) изготавливают на базе стандартных автомобилей. Шасси автомобиля-самосвала имеет следующие основные отличия от шасси базовой модели автомобиля с бортовым кузовом: укороченную раму и меньшую базу, усиленные задние рессоры, уменьшенную длину заднего карданного вала, измененное место крепления заднего фонаря, измененное место крепления держателя запасного колеса.
На всех самосвалах устанавливают гидравлические подъемные механизмы с одним или двумя цилиндрами. Цилиндры подъемников бывают телескопические и простые. Платформа самосвала обычно опрокидывается назад. У некоторых самосвалов платформа опрокидывается на две боковые или на три стороны.
На автомобилях-самосвалах встречаются две схемы подъемных механизмов: а) с непосредственным воздействием штока гидроцилиндра на платформу, с воздействием штока гидравлического цилиндра на платформу посредством рычажно-БАЛАНСИРНЬЙ системы.
Управление подъемом платформы бывает механическим и пневматическим (МАЗ-503).
Исходные данные: грузоподъемность Q=5,5т (5500 кг) длина платформы l=3,2 м (3200 мм) высота h=0,97 м (970 мм) угол подъема ?=600
1.Определение кинематических и силовых параметров подъемного механизма.
Для проектирования подъемного механизма необходимо иметь следующие исходные данные:
Положение центра тяжести платформы определяется компоновкой.
Для определения радиуса поворота платформы необходимо задаться положением O поворотного шарнира.
Для определения геометрических параметров звеньев системы соединим точку О шарнирного соединения платформы с рамой автомобиля точками О1 и О2 крепления гидроцилиндра к раме автомобиля и к платформе и определим углы a и f0 полученного треугольника, а также а также длину L гидроцилиндра в процессе выдвижения подвижных ступеней и плечо b действия силы F приложенной к платформе гидроцилиндром.
Пользуясь теоремой косинусов определим первоначальные параметры платформы до ее подъема при задвинутых ступенях гидроцилиндра подставив значение L из выражения (1) в (2) получим:
Плечо li действия силы от веса груза с платформой является переменной величиной, зависящей от угла f подъема платформы с грузом угол между радиусом и плечом действия силы от веса груза с платформой в исходном положении при опущенной платформе:
где r радиус действия силы отвеса груза с платформой, определяемый по построению;
По результатам расчета усилий построен график зависимости силы Fi, создаваемой гидроцилиндром в зависимости от угла f подъема платформы.
В общем случае сила Fi, создаваемая плунжером соответствующей ступени телескопического гидроцилиндра определяется по известной формуле
= где p рабочее давление в гидросистеме, создаваемое шестеренным насосом, р=рн=10…12,5 МПА;
Ai площадь поперечного сечения плунжера соответствующей ступени гидроцилиндра, м2;
hm=0,96…0,97 механический КПД гидроцилиндра;
Di расчетный диаметр плунжера соответствующей ступени гидроцилиндра, м;
Диаметр поперечного сечения уплотняющего резинового кольца d = 4…7 мм.
При гидравлическом расчете телескопического гидроцилиндра принимаем: рабочее давление = рн = 10 МПА; механический КПД гидроцилиндра ; диаметр поперечного сечения уплотняющего кольца мм; допускаемое напряжение на растяжение гидроцилиндра из материала Сталь 45 с пределом текучести st=360 МПА (табл. 2.1 прилож. I).
Определение геометрических параметров гидроцилиндра
Расчетным усилием Fi является максимальное усилие соответствующее началу выдвижения очередной ступени гидроцилиндра принимаемое по графику.
Углы соответствующих усилий находим по формуле:
а именно: УСИЛИЕF1= КН соответствует окончанию выдвижения второй ступени и началу выдвижения плунжера первой ступени гидроцилиндра;F2= КН соответствует окончанию выдвижения третьей ступени и началу выдвижения второй ступени; F3= КН соответствует началу выдвижения третьей ступени гидроцилиндра.
Из формулы определяем диаметр Di плунжера соответствующей ступени гидроцилиндра.
Диаметр D1 плунжера 1 первой ступени гидроцилиндра мм
Определяем минимальное значение диаметра второй ступени гидроцилиндра: Па
мм мм где a2 габаритный размер в конструкции под уплотнение плунжера 1 первой ступени гидроцилиндре.
?? толщина стенки второй ступени гидроцилиндра мм
Проверяем полученное расчетное значение диаметра второй ступени по усилию F2 мм
Принимаем за расчетный диаметр D2 второй ступени большее из двух вычисленных ранее значений диаметров а именно =63мм.
Определяем минимальное значение диаметра D3 третьей ступени 3 гидроцилиндра мм мм
Проверяем полученное расчетное значение диаметра второй ступени по усилию F3 мм
Принимаем за расчетный диаметр D3 второй ступени большее из двух вычисленных ранее значений диаметров а именно =76 мм.
Диаметр Dk корпуса гидроцилиндра определяем конструктивно исходя из условия размещения в нем третьей ступени гидроцилиндра мм мм
Минимальную толщину стенки днища гидроцилиндра ?дн принимаем в пределах ?дн = (2…4)?к; мм. мм
При величине наружного диаметра плунжера 1 первой ступени D1 > 40 мм рекомендуется плунжер изготовлять полым из (трубы). С этой целью определяем его внутренний диаметр d0:
м где Fmax максимальное усилие развиваемое гидроцилиндром (Fmax = F3);
Исходя из условий эксплуатации телескопического гидроцилиндра подъемного механизма автомобиля-самосвала минимальная толщина стенки полого плунжера 1 не должна быть менее 10 мм. т. е. ?min = 10 мм.
С учетом выполненных расчетов мм
Тогда внутренний диаметр d0 плунжера: мм
Расчет давления рабочей жидкости в гидроцилиндре
Расчет давления p рабочей жидкости в телескопическом гидроцилиндре в зависимости от угла подъема платформы проводится для каждой выдвижной ступени с учетом ее площади по формуле: Pi=Fi/Ai где Fi усилие создаваемое гидроцилиндром в зависимости от угла подъема платформы;
Результаты расчета давления представлены графически.
Из графика следует, что в момент окончания выдвижения предыдущей ступени и начала выдвижения последующей давление возрастает, а затем плавно падает до полного выдвижения данной ступени. Это вызвано тем, что для каждой выдвижной ступени давление p в гидроцилиндре определяется делением усилия на меньшую площадь последующей выдвижной ступени. м2
м2
м2
Расчет гидроцилиндра на продольную устойчивость
Продольная устойчивость телескопического гидроцилиндра обеспечивается при соотношении длины хода l плунжера к его диаметру D: l/D<10. При большем соотношении необходимо использовать другую методику.
Диаметр dц или щаровой опори dk расчитывают, исходя из условия невыдавливания масла при допустимом давлении в шарнирном соединении q = 15…20 МПА по формуле: Па мм принимаем 36мм мм принимаем ближайщее большее 34мм
Определяем расчетное значение расхода рабочей жидкости Qp трехступенчатым телескопическим гидроцилиндром, при средней скорости vcp подъема платформы дм/м
Принимаем шестеренный насос типа НШ32У, подача которого л/м при частоте вращения приводного вала 1440 об/м и ?об.= 0,92.
Необходимая частота вращения n приводного вала выбранного насоса для обеспечения расчетной подачи Qp = 24 л/м.
Определяем мощность потребляемую насосом: Вт
Определение средней скорости. Для этого определяем скорость движения каждой ступени гидроцилиндра m/c m/c m/c m/c
По вычисленному диаметру dtp принимаем ближайшее меньшее значение из ряда стандартных номинальных диаметров труб или так званых условных проходов. Диаметр остается тот же.
Расчет подъемного механизма автомобиля-самосвала
Определение кинематических и силовых параметров подъемного механизма.
Исходные данные: G=5500 кг=5,5 т - вес груза с платформой, l=3,2 м - длина кузова, h=0,97 м - высота кузова, ?=60? - угол подъема платформы, р=рн=10 МПА - давление в гидросистеме.
Кроме того R - радиус поворота платформы; ?0- угол, определяющий исходное положение радиуса поворота при опущенной платформе; ?max - угол, определяющий положение радиуса поворота при полностью поднятой платформе ?max -? 0 = ?, (? - заданный угол подъема платформы).
Усилие F гидроподъемника зависит от угла ? рис.1. Положение центра тяжести платформы определяется компоновкой. Для определения радиуса поворота платформы необходимо задаться положением O поворотного шарнира.
Для определения геометрических параметров звеньев системы соединим точку О шарнирного соединения платформы с рамой автомобиля точками О1 и О2 крепления гидроцилиндра к раме автомобиля и к платформе и определим углы ? и ?0 полученного треугольника, а также а также длину L гидроцилиндра в процессе выдвижения подвижных ступеней и плечо b действия силы F приложенной к платформе гидроцилиндром.
Пользуясь теоремой косинусов, определим первоначальные параметры платформы до ее подъема при задвинутых ступенях гидроцилиндра:
(1)
, подставив значение b из выражения (3) в (2) получим: . (2)
, (3)
??0 = 18,74o).
Аналогично найдем углы подъема кузова ?4 и ?9 при полностью выдвинутых 1-й и 2-й ступенях гидроцилиндра. ?4 ?0=37,35? => ?4=37,35?- ?0=37,35?-18,74o=18,61? ?9 ?0=57,3? => ?9=57,3?- ?0=57,3?-18,74?=38,56? =
, (?=50,076? ).
, м (4)
Плечо li действия силы от веса груза с платформой является переменной величиной, зависящей от угла ?i подъема платформы с грузом: li=r·cos(? ?), (5) где r - радиус действия силы отвеса груза с платформой, определяемый по построению;
?- угол между радиусом и плечом действия силы от веса груза с платформой в исходном положении при опущенной платформе. Результаты расчетов в табл.1.
Таблица 1 ?i li
0 1799,3
5 1753,2
10 1693,7
15 1621,3
18,61 1561,4
20 1536,6
25 1440,2
30 1332,8
35 1215,3
38,56 1125,9
40 1088,5
45 953,45
50 811,14
55 662,66
60 509,13
, (?=14,07°). (6)
Усилие создаваемое гидроцилиндром необходимое для подъема платформы определяем аналитическим методом используя уравнение моментов всех сил, действующих на платформу относительно точки О (оси вращения платформы) (рис.1).
(7)
По результатам расчета усилий (табл.2) построен график (рис.2) зависимости силы Fi, создаваемой гидроцилиндром в зависимости от угла ?i подъема платформы.
В общем случае сила Fi, создаваемая плунжером соответствующей ступени телескопического гидроцилиндра определяется по известной формуле
, (8) где p - рабочее давление в гидросистеме, создаваемое шестеренным насосом, р=рн=10…12,5 МПА;
Ai - площадь поперечного сечения плунжера соответствующей ступени гидроцилиндра, м2;
hm=0,96…0,97 - механический КПД гидроцилиндра;
Di - расчетный диаметр плунжера соответствующей ступени гидроцилиндра, м;
Диаметр поперечного сечения уплотняющего резинового кольца d = 4…7 мм.
При гидравлическом расчете телескопического гидроцилиндра принимаем: рабочее давление p = рн = 10 МПА; механический КПД гидроцилиндра hm=0,97; диаметр поперечного сечения уплотняющего кольца d = 5 мм; допускаемое напряжение на растяжение гидроцилиндра из материала Сталь 45 с пределом текучести st=360 МПА. Принимая коэффициент запаса прочности [s]=3, получим
МПА. (9)
Рис.2
2.2 Определение геометрических параметров гидроцилиндра
Расчетным усилием Fi является максимальное усилие, соответствующее началу выдвижения очередной ступени гидроцилиндра принимаемое по графику (рис.2), а именно: усилие F1=19,80363 КН соответствует окончанию выдвижения второй ступени и началу выдвижения плунжера первой ступени гидроцилиндра; F2=25,61715804 КН соответствует окончанию выдвижения третьей ступени и началу выдвижения второй ступени; F3=29,341852 КН соответствует началу выдвижения третьей ступени гидроцилиндра.
Из формулы (8) определяем диаметр Di плунжера соответствующей ступени гидроцилиндра (рис.3).
Диаметр D1 плунжера 1 первой ступени гидроцилиндра
. (10)
Принимаем D1=50 мм.
Определяем минимальное значение диаметра D2 второй ступени гидроцилиндра: D2 = D1 2(a2 ???=50 2•(3,5 3)=63 мм ???? где a2 - габаритный размер в конструкции под уплотнение плунжера 1 первой ступени гидроцилиндре (рис.3). Принимаем a2 = 0,7d= 0,7 ? 5=3,5 мм;
d=5 мм - диаметр уплотнения;
?? - толщина стенки второй ступени гидроцилиндра мм (12)
Проверяем полученное расчетное значение диаметра второй ступени по усилию F2 мм. (13)
Принимаем за расчетный диаметр D2 второй ступени большее из двух вычисленных ранее значений диаметров, а именно D2=63 мм.
Определяем минимальное значение диаметра D3 третьей ступени 3 гидроцилиндра
D3 = D2 2(a3 ???=63 2•(3,5 3)=76 мм? (14) где а3-габаритный размер в конструкции под уплотнение второй ступени в гидроцилиндре. Принимаем a3 = 0,7d = 0,7 ? 5=3,5 мм;
??-толщина стенки третьей ступени гидроцилиндра
, (15)
Проверяем полученное расчетное значение диаметра третьей ступени по усилию F3 мм (16)
Принимаем за расчетный диаметр D3 второй ступени большее из двух вычисленных ранее значений диаметров а именно D3 =76 мм.
Диаметр Dk корпуса гидроцилиндра определяем конструктивно исходя из условия размещения в нем третьей ступени гидроцилиндра
Dk = D3 2(ak ?к?=76 2•(3,5 4)=91 мм? ????? где ак-габаритный размер в конструкции под уплотнение третьей ступени в гидроцилиндре. Принимаем ак = 0,7d = 0,7 ? 5=3,5 мм;
?к-толщина стенки корпуса 4 гидроцилиндра мм, (18)
Минимальную толщину стенки днища гидроцилиндра ?дн принимаем в пределах ?дн = (2…4)?к = 3?4,0 = 12 мм.
При величине наружного диаметра плунжера 1 первой ступени D1 > 40 мм рекомендуется плунжер изготовлять полым (из трубы). С этой целью определяем его внутренний диаметр d0
= мм,(19) где Fmax-максимальное усилие развиваемое гидроцилиндром (Fmax = F3);
Исходя из условий эксплуатации телескопического гидроцилиндра подъемного механизма автомобиля-самосвала минимальная толщина стенки полого плунжера 1 не должна быть менее 10 мм. т. е. ?min ? 10 мм.
С учетом выполненных расчетов
. (20)
Тогда внутренний диаметр d0 плунжера: d0 = D1 - 2??min = 50 - 2 •10 = 30 мм.
2.3 Расчет давления рабочей жидкости в гидроцилиндре
Расчет давления p рабочей жидкости в телескопическом гидроцилиндре в зависимости от угла подъема платформы проводится для каждой выдвижной ступени с учетом ее площади по формуле
, (21) где Fi-усилие создаваемое гидроцилиндром в зависимости от угла подъема платформы;
Результаты расчета давления представлены графически на рис.4 и в табл. 3.
Таблица 3
- ?i Рi
1-я ступень 0 6,46795
5 6,24612
10 6,03991
15 5,82058
18,61 5,6469
2-я ступень 20 8,11523
25 7,71328
30 7,25995
35 6,75125
38,56 6,35343
3-я ступень 40 9,81656
45 8,81706
50 7,71317
55 6,49832
60 5,16473
Из графика следует, что в момент окончания выдвижения предыдущей ступени и начала выдвижения последующей давление возрастает, а затем плавно падает до полного выдвижения данной ступени. Это вызвано тем, что для каждой выдвижной ступени давление p в гидроцилиндре определяется делением усилия на меньшую площадь последующей выдвижной ступени.
2.4 Расчет гидроцилиндра на продольную устойчивость
Продольная устойчивость телескопического гидроцилиндра обеспечивается при соотношении длины хода l плунжера к его диаметру D LCD ? 10. При большем соотношении LCD > 10 необходимо выполнить расчет на продольную устойчивость.
2.5. Расчет параметров опор гидроцилиндра
Диаметр dц цапфы или шаровой опори dk (рис.5)рассчитывают исходя из условий не выдавливания смазки при допустимом давлении в шарнирном соединении q = 15…20 МПА за формулою