Теория массового обслуживания. Нахождение коэффициента использования сервера. Экспоненциальный закон распределения времени между соседними вызовами. Вероятность отказа в обслуживании. Среднее время ожидания и пребывания в системе. Расчет объема буфера.
Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Теория массового обслуживания исследует на основе теорий вероятностей математические методы количественной оценки процессов массового обслуживания.Классификация СМО типа М/М/1:? по Кендаллу: M - экспоненциальный закон распределения времени между соседними вызовами; M - экспоненциальный закон распределения времени обслуживания; Для нахождения коэффициента использования сервера ?, применяется формула: где ? - параметр потока освобождений, ? = 1/ Среднее количество запросов Nq, ожидающих обслуживания, определяется по формуле: Nq = = = 4,99 сообщенийКлассификация СМО типа М/М/1:L по Кендаллу: M - экспоненциальный закон распределения времени между соседними вызовами; M - экспоненциальный закон распределения времени обслуживания; Вероятность отказа в обслуживании : Вероятность отказа в обслуживании определим по первой формуле Эрланга: = = = 0,45Классификация СМО типа М/М/1:N по Кендаллу: M - экспоненциальный закон распределения времени между соседними вызовами; Попытка их математического описания с помощью детерминистических моделей приводит к огрублению истинного положения вещей. При решении задач анализа и проектирования таких систем приходится считаться с положением вещей, когда случайность является определяющей для процессов, протекающих в системах. При этом пренебрежение случайностью, попытка “втиснуть” решение перечисленных задач в детерминистические рамки приводит к искажению, к ошибкам в выводах и практических рекомендациях. Первые задачи теории систем массового обслуживания (ТСМО) были рассмотрены сотрудником Копенгагенской телефонной компании, датским ученым А.К.
План
Содержание
Введение
1. Расчетная часть
1.1 Система типа М/М/1:?
1.2 Система типа М/М/1:L
1.3 Система типа М/М/1:N
Заключение
Список использованных источников сервер вызов отказ обслуживание
Введение
Во многих областях практической деятельности человека мы сталкиваемся с необходимостью пребывания в состоянии ожидания. Подобные ситуации возникают в очередях в билетных кассах, в крупных аэропортах. Во всех перечисленных случаях имеем дело с массовостью и обслуживанием. Изучением таких ситуаций занимается теория массового обслуживания.
Теория массового обслуживания исследует на основе теорий вероятностей математические методы количественной оценки процессов массового обслуживания. Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений.
Система массового обслуживания (СМО) - система, которая производит обслуживание поступающих в нее требований. Обслуживание требований в СМО производится обслуживающими приборами. Классическая СМО содержит от одного до бесконечного числа приборов.
Список литературы
1. Л.Н. Волков, М.С. Немировский, Ю.С. Шинаков. Системы цифровой радиосвязи: базовые методы и характеристики. Учебное пособие. - М.: Эко-трендз, 2005.
2. М.В. Гаранин, В.И. Журавлев, С.В. Кунегин. Системы и сети передачи информации. - М.: Радио и связь, 2001.
3. Передача дискретных сообщений. / Под ред. В.П. Шувалова. - М.: Радио и связь, 1990.
4. Основы передачи дискретных сообщений. / Под ред. В.М. Пушкина. - М.: Радио и связь, 1992.
5. Н.В. Захарченко, П.Я. Нудельман, В.Г. Кононович. Основы передачи дискретных сообщений. -М.: Радио и связь, 1990.
6. Дж. Прокис. Цифровая связь. - М.: Радио и связь, 2000.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы