Расчет и проектирование светодиода - Курсовая работа

бесплатно 0
4.5 65
Теоретические основы работы светоизлучающих диодов, области их применения, устройство и требования к приборам. Полупроводниковые материалы, используемые в производстве светоизлучающих диодов: арсенид и фосфид галлия. Основные параметры светодиода.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Полупроводниковые светоизлучающие диоды (СИД) или светодиоды - это класс твердотельных приборов, в которых электрическая энергия непосредственно преобразуется в световую. На сегодняшний день СИД активно применяются в различных областях: оптоэлектроника, системы отображения информации (как табло «бегущих» строк текста, так и достаточно качественных панелей вывода статичного и динамического изображений). Круг задач, при решении которых используются светодиоды, обусловлен высокой эффективностью преобразования электрической энергии в световую (15-20 лм/Вт, лампы накаливания - 10-15 лм/Вт), высокой яркостью и квантовым выходом (при небольшой площади СИД сила света по оси - 30-50 кд), высоким быстродействием (малая инерционность - порядка единиц наносекунд), характерным спектральным составом, возможностью модуляции излучения питанием, малым потреблением энергии (доли или единицы ватт), электробезопасностью (единицы вольт), надежностью, большим сроком службы (десятки тысяч часов), высокой устойчивостью к механическим и климатическим воздействиям.Светоизлучающий диод состоит из кристалла полупроводника с электронно-дырочным переходом и омическими контактами и элементов конструкции, предназначенных для сбора излучения, увеличения внешней оптической эффективности, улучшения восприятия свечения и формирования необходимой диаграммы направленности излучения, а также обеспечения электрического контактирования с внешней цепью и удобного монтажа прибора в аппаратуре. Таким образом, светоизлучающий диод - прибор, в котором осуществляется не только генерация света, но и перераспределение его в пространстве. При рассмотрении применения светоизлучающих диодов в качестве сигнальных индикаторов различают панельную и внутрисхемную индикацию. К светоизлучающим диодам для панельной индикации предъявляются следующие требования: а) сила света, как правило, должна превышать 1 мкд, причем яркость светоизлучающего диода должна превосходить яркость выключенного диода и яркость фона при максимально допустимой внешней освещенности; д) конструкция диодов должна иметь высокое отношение диаметра (поперечного размера) светящейся поверхности к наружному диаметру (размеру) прибора для обеспечения плотного монтажа диодов на панели.Следует иметь в виду, что кристаллы на основе структур с прозрачной подложкой, например структур на GAP-подложке, имеют значительное боковое излучение, что позволяет при его сборе и использовании существенно увеличить силу света и силу излучения. Это вызывается следующими обстоятельствами: высокой стоимостью и дефицитностью исходных материалов; повышением квантового выхода излучения с увеличением плотности тока для большинства материалов; повышением эффективности оптической системы светоизлучающего диода для сбора и преобразования излучения при уменьшении размера кристалла; возможностью получить светящееся пятно необходимых размеров за счет различных конструктивных решений по прибору в целом. Ограничивающие факторы в уменьшении размера кристалла: возрастающие трудности сборки, особенно автоматизированной, и деградация оптических характеристик приборов в процессе работы. Тонкий слой контактного металла более теплопроводен и электропроводен, чем толстый, вызывает меньшие механические напряжения в кристалле и позволяет скалывать или вырезать кристалл вместе с контактным металлом. При изготовлении контактов к кристаллам светоизлучающих диодов верхний омический контакт должен быть, с одной стороны, минимальной площади для уменьшения потерь света, с другой стороны, содержать площадку, согласованную по размерам со сварочным инструментом, а также иметь элементы, обеспечивающие равномерное растекание тока по площади р-n-перехода.Диоды с полимерной герметизацией по некоторым характеристикам имеют преимущества перед диодами в металлостеклянной конструкции а) полимерная герметизация в большей степени позволяет осуществить перераспределение света в пространстве как в направлении сужения диаграммы направленности излучения (с увеличением силы света), так и в направлении ее расширения; б) полимерная герметизация увеличивает внешний квантовый выход излучения за счет увеличения угла полного внутреннего отражения на границе кристалл-полимер, в) герметизированные полимерами приборы обладают большей стойкостью к ударным и вибрационным нагрузкам, чем приборы в металло-стеклянных корпусах г) полимерная герметизация позволяет получить при необходимости малое отношение объема (габарита) прибора к объему (габариту) кристалла; Однако диоды с полимерной герметизацией в настоящее время уступают диодам в металло-стеклянном корпусе в отношении устойчивости к длительному воздействию влажности и резкой смене температур. Помещение в посадочное место кристалла с непрозрачной подложкой (например, из Ga0,7Al0,3As) приводит к несколько меньшему эффекту: сужению диаграммы направленности с 120 до 75 ° и увеличению осевой силы света примерно в 1,5 раза. Одновременно с увеличением силы света и сужением диаграммы направленности излучения применение описанного кр

План
Содержание

ВВЕДЕНИЕ

1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ

1.1 Светоизлучающиие диоды

1.1.1 Области применения и требования к приборам

1.1.2 Светоизлучающий кристалл

1.1.3 Устройство светоизлучающих диодов

1.1.4 Светоизлучающие диоды с управляемым цветом свечения

1.1.5 Индикаторы состояния

1.1.6 Индикаторы на светодиодах

1.2 Полупроводниковые материалы, используемые в производстве светоизлучающих диодов

1.2.1 Арсенид галлия

1.2.2 Фосфид галлия

2 РАСЧЕТ И ПРОЕКТИРОВАНИЕ СВЕТОДИОДА

2.1 Основные параметры светодиода

2.2 Расчет светодиода

2.2.1 Расчет эффективности светодиода

2.2.2 Расчет телесного угла

2.2.3 Примерный расчет эффективности

2.2.4 Уточненный расчет эффективности

2.2.5 Расчет составляющих эффективности

2.2.6 Расчет инжекции не основных носителей тока

2.2.7 Расчет светодиодного резистора

ВЫВОДЫ

СПИСОК ЛИТЕРАТУРЫ

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?