Расчет фазового детектора - Курсовая работа

бесплатно 0
4.5 48
Классификация фазовых детекторов, анализ схем их построения. Балансный фазовый детектор. Фазовый детектор на логических дискретных элементах. Описание устройства коммутационного, однократного диодного фазового детектора. Особенности выбора его схемы.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Анализ помехоустойчивости систем связи с фазовой манипуляцией показывает, что переход от частотной манипуляции при наиболее распространенном некогерентном приеме сигналов ЧМ к фазовой эквивалентен увеличению мощности передатчика в 3-4 раза. Этот выигрыш обусловлен возможностью сужения в два раза полосы пропускания приемника по сравнению с ЧМ и появление фазовой селективности, дающей дополнительное ослабление составляющих помех, не совпадают по фазе с импульсами сигнала. Общий принцип приема сигналов с фазовой манипуляцией состоит в сравнении на фазовом детекторе фазы принимаемых сигналов с фазой колебаний местного гетеродина. Частота и фаза этих колебаний должны точно совпадать с частотой и фазой одно из элементарных сигналов. Основная трудность при практической реализации метода фазовой телеграфии состоит в получении опорного напряжения, частота и фаза которого точно совпадает с частотой и фазой одного из элементарных сигналов.Разнообразные схемы фазового детектора по принципу действия можно разделить на две большие группы: нелинейные векторомерные и параметрические. Классификация фазовых детекторов приведена на рисунке К векторомерным относятся фазовым детекторам, в которых выходное напряжение Uвых.фд(t) образуется сравнением амплитуд векторных сумм и разности колебаний U1(t) и U2(t) с помощью нелинейных элементов и последующего детектирования результирующего сигнала. Детекторы (дискриминаторы) этой группы используют на высоких частотах. К параметрическим относят детекторы, в которых преобразование разности фаз сигналов в выходное напряжение осуществляется при помощи линейных цепей с переменными параметрами. В ряде случаев, в том числе когда требуется специальная характеристика фазового детектора, например в цифровых синтезаторах частоты, используются импульсно-фазовые дискриминаторы.Балансный фазовый детектор представляет собой два диодных однотактных фазовых детекторов, каждый из которых работает на свою нагрузку. Входное напряжение подводится к диодам в противоположной полярности поэтому фаза напряжения Uвх` отличается от фазы Uвх`` на . Следовательно, В кольцевом фазовом детекторе используют два балансных фазовых детектора, при этом симметричность характеристики детектирования улучшается , а коэффициент детектора возростает.Детектор имеет два входа: на первый подается ФМ - колебание (рис.9,а), на второй - опорное напряжение (рис. В качестве УФ1 и УФ2 (рис.11) использованы компараторы с гистерезисом DA 1 и DA 2 . Диаграммы напряжений u1 и u2 на выходе УФ1 и УФ2 показаны на рис.( 9,б,г ) . Напряжения u1 и u2 подаются на цепь И, в качестве которой используются два логических элемента И-НЕ DD1.3 и DD1.4. Напряжение u на выходе цепи И создается только при одновременном действии напряжений u1 и u2. Для фазового детектирования к диоду прикладывается входной сигнал и опорное напряжение; напряжение Ед на выходе ФД определяется выражением ,полученным при предположении, что Unx<<U0.Одно из входных напряжений подводится к схеме с помощью трансформатора со средней точкой таким образом, чтобы составляющие этого напряжения имели одинаковую амплитуду и действовали на диоды тоесть и .Второе входное напряжение через трансформатор подводится к диодам с одной фазой. Таким образом, на каждом из диодов действует сумма двух напряжений конденсаторы и для токов частот представляют короткое замыкание: Рис.16 Напряжение детектируется на нагрузках амплитудных детекторов возникнут напряжения где коэффициент передачи амплитудного детектора. Если амплитуда одного из входных напряжений существенно больше амплитуды другого (например ) уравнение характеристики оказывается еще более простым: (12); Для балансного фазового детектора характерно, что его входное напряжение зависит от соотношения амплитуд входных напряжений :(см.рис)При практическом использовании фазовых детекторов (особенно в системе фазовой автоподстройки частоты) предъявляются весьма высокие требования к фильтрации отличных от ?1-?2 комбинационных частот на выходе детектора, неизбежно образующихся в процессе детектирования. В тех случаях, когда предъявляются высокие требования к фильтрации указанных комбинационных составляющих, прибегают к использованию более сложных (например, кольцевых) фазовых детекторов.

План
Содержание

Введение

1. Классификация фазовых детекторов

2. Анализ схем построения фазовых детекторов

2.1 Балансный фазовый детектор

2.2 Фазовый детектор на логических дискретных элементах

2.3 Однократный диодный фазовый детектор

2.4 Коммутационный фазовый детектор

3. Выбор и обоснование схемы фазового детектора

Заключение

Список литературы

Введение
Радиотелеграфная связь с использованием фазовой манипуляции (часто ее называют фазовой телеграфией) является перспективным видом телеграфной связи, так как ее помехоустойчивость значительно помехоустойчивости частотной телеграфии и тем более амплитудной телеграфии. Анализ помехоустойчивости систем связи с фазовой манипуляцией показывает, что переход от частотной манипуляции при наиболее распространенном некогерентном приеме сигналов ЧМ к фазовой эквивалентен увеличению мощности передатчика в 3-4 раза. Этот выигрыш обусловлен возможностью сужения в два раза полосы пропускания приемника по сравнению с ЧМ и появление фазовой селективности, дающей дополнительное ослабление составляющих помех, не совпадают по фазе с импульсами сигнала. Применение фазовой манипуляции позволяет передавать несколько двоичных сообщений на одной частоте без расширения полосы частот.

Передача элементов сигнала осуществляется в простейшем случае изменением на фазы колебания одной и той же частоты . Общий принцип приема сигналов с фазовой манипуляцией состоит в сравнении на фазовом детекторе фазы принимаемых сигналов с фазой колебаний местного гетеродина. Частота и фаза этих колебаний должны точно совпадать с частотой и фазой одно из элементарных сигналов. При совпадении фаз колебаний гетеродина и элементарного сигнала на выходе фазового детектора получается импульс положительной полярности; при фазах, отличающихся на , выдается импульс отрицательной полярности.

Структурная схема приемника сигналов с фазовой модуляцией показана на рис.(1)

Общий радиотракт приемника (ОРТ) выполняет обычные функции селекции, усиление и преобразование частоты принимаемого сигнала. В отличие от приемников АМ и ЧМ сигналов к приемнику сигналов ФН предъявляет требования повышенной частотной точности и более высокой линейности фазовых характеристик.

Тракт усиления и формирования телеграфных импульсов также не отличается от обычных блоков, применяемых в приемниках радиотелеграфных сигналов. Основными специфическими элементами схемы являются фазовый детектор и синхронный гетеродин, которые и решают задачу преобразования радиосигналов с фазовой манипуляцией в импульсы постоянного тока, полярность которых меняется в зависимости от фазы элементарных сигналов.

Основная трудность при практической реализации метода фазовой телеграфии состоит в получении опорного напряжения, частота и фаза которого точно совпадает с частотой и фазой одного из элементарных сигналов. Решить задачу применением автономного местного гетеродина невозможно, так как требуется практически нереализуемая стабильность его частоты. Кроме того, такой гетеродин не может следить за изменениями частоты и фазы сигнала в канале связи. Выделение из спектра ФМ колебания с несущей частотой для использования его в качестве опорного напряжения также не представляется возможным, так как спектр сигнала при

ФМ не содержит составляющей с частотой , а в реальном спектре она сильно ослаблена. Поэтому применяются гетеродины опорных колебаний, фаза которых непрерывно корректируется сигналом, либо опорное напряжение создается после ряда нелинейных преобразований из принимаемого сигнала.

Современные радиоприемные устройства широко используют аналоговую и цифровую реализацию отдельных функциональных узлов, В том числе детекторов, поэтому следует различать цифровые схемы, которые могут либо повторять принципы аналогового детектирования, либо реализовать алгоритмы, отличающиеся от аналоговых, широко применяемых на практике.

В литературе нет установившегося названия устройствам, выполняющим операцию сравнения и одновременного преобразования одного вида сигнала в другой. В зависимости от области применения используют понятия: различитель, дискриминатор, демодулятор, детектор.

Фазовые детекторы находят широкое применение в различных фазометрических устройствах в системах автоподстройки частоты, в следящих узкополосных фильтрах способных автоматически перестраиваться при изменении частоты принимаемого сигнала, а также для детектирования фазомодулированных и фазоманипулированных сигналов.

Фазовый детектор (ФД) - это устройство, выходной сигнал которого определяется разностью фаз колебаний, подаваемых на его входы. Мгновенное значение выходного напряжения фазового детектора: Uвых.фд =Uфд.MAXF( ) (1) где F( ) - нормированная характеристика фазового детектора; -мгновенная разность фаз входных напряжений.

Вывод
При практическом использовании фазовых детекторов (особенно в системе фазовой автоподстройки частоты) предъявляются весьма высокие требования к фильтрации отличных от ?1- ?2 комбинационных частот на выходе детектора, неизбежно образующихся в процессе детектирования. Эти побочные комбинационные составляющие отрицательно сказываются и на работе системы автоподстройки и могут привести к значительным ошибкам. В тех случаях, когда предъявляются высокие требования к фильтрации указанных комбинационных составляющих, прибегают к использованию более сложных (например, кольцевых) фазовых детекторов. Хорошие результаты могут быть также получены при использовании коммутаторных фазовых детекторов.

Достоинства: Большая линейность характеристики, если U0=Uc/2, то будет максимум области линейности характеристики; большая крутизна; характеристика проходит через ноль.

Недостаток: более сложное построение.

Список литературы
Проектирование радиоприемных устройств: Учебное пособие для вузов под редакцией А.П. Сиверса - М.: Советское радио, 1976 .

Радиоприемные устройства: Учебник для вузов под редакцией

Н.Н. Фомина - М.: Радио и связь, 1996.

3.Радиоприемные устройства: О.В. Головин - М.: Высшая Школа, 1997

4. Разработка структурной схемы радиоприемного устройства: Учебное пособие по курсовому проектированию. Сидоров В.М. -М.: типография ВЗЭИС, 1988.

5. Горшков Б.И. Элементы радиоэлектронных устройств. Справочник. М:”Радио и связь”, 1988 - 316 с.

6. Бобров Н.В., Максимов Г.В., Мичурин В.Н. Расчет радиоприемников. М: Воениздат, 1971.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?