Изучение распределения яркости по небу. Распределение яркости по вертикалу Солнца. Изучение распределения яркости в заревом кольце и его изменений. Применение светосильных фотокамер для наблюдения околосолнечного ореола. Наблюдение явления бегущих теней.
При низкой оригинальности работы "Работы по атмосферной оптике во время полных солнечных затмений", Вы можете повысить уникальность этой работы до 80-100%
Полное солнечное затмение представляет значительный интерес не только для решения астрономических задач, но и для решения некоторых задач атмосферной оптики. Дело в том, что во время полного затмения наблюдатель попадает в совершенно особые условия, когда освещенность небесного свода создается не рассеянием прямых лучей Солнца, а в основном - многократным рассеянием света, приходящего извне конуса лунной тени, от тех слоев воздуха, которые, находясь на значительном расстоянии от наблюдателя, освещаются лучами частично затмившегося Солнца. Наблюдатель, находящийся в точке С внутри конуса лунной тени, получает свет от слоев воздуха АА1, которые, в свою очередь, получают его от слоев ВВ1, освещаемых Солнцем.Как показали фотометрические наблюдения во время солнечных затмений 1936, 1941, 1945 и 1952 гг., распределение яркости по небу за время полной фазы значительно изменяется, отражая перемещение лунной тени относительно наблюдателя. В деревянной коробке монтируются 25 трубок, расположенных так, что одна из них направлена вертикально, 8 - под углом к вертикали в 30° (через 45° по азимуту), 8 - под углом 45° и 8 - под углом 60°. Внизу прикрепляется тонкая металлическая пластинка с 25 отверстиями диаметром в 1 мм, которыми и заканчиваются трубки. Для этого внизу фотометра прикрепляются салазки в виде длинных уголков, по которым движется фанерный подкассетник с вложенной в него кассетой, заряженной фотопластинкой. Рассеянный свет от областей неба, на которые направлены трубки, проходит сквозь трубки фотометра и падает на фотопластинку, создавая отпечатки в виде 25 маленьких кружков различной плотности (при каждой экспозиции).Если наблюдатель не имеет возможности охватить фотометрическими наблюдениями все небо, можно рекомендовать произвести подробное изучение распределения яркости по вертикалу Солнца. Этот «веер», установленный в вертикале Солнца, должен охватить 180°-от горизонта до горизонта. Камеры одного из агрегатов снабжаются светофильтрами, пропускающими лишь желтые лучи (светофильтры у камер одного агрегата должны быть совершенно одинаковыми!), а камеры другого агрегата - синими светофильтрами. Такими точками являются: полюс мира, угловое расстояние которого в течение всего затмения остается постоянным как от Солнца, так и от горизонта, и точка, симметричная Солнцу, т. е. расположенная в противоположном азимуте, но на той же высоте. После наблюдений во время затмения с этим же фотометром (или фотокамерами) должны быть произведены аналогичные наблюдения яркости неба у полюса в сумерки, начиная от захода Солнца и до появления звезд 2-3-й величины.Изучение распределения яркости в заревом кольце и его изменения за время полной фазы представляют большой интерес, особенно ввиду незначительности полученного до сих пор материала. Помимо расстояния наблюдателя до соответствующей точки заревого кольца (т. е. до границы тени в данном направлении) и ее угловой высоты, яркость неба в этой точке зависит от высоты наблюдателя над уровнем моря, от запыленности атмосферы и некоторых других факторов. Наблюдения яркости заревого кольца весьма интересно провести из мест, находящихся в стороне от линии центрального затмения и даже около границ полосы полного затмения (как внутри, так и вне полосы, но не далее 5 км от нее). Так как при этой работе необходимо получить большое количество экспозиций во время полной фазы без перезарядки, для изучения изменения яркости заревого кольца во время полного затмения могут быть применены только камеры типа ФЭД, имеющие по 36 кадров в катушке, но работа с ними вносит ряд осложнений ввиду необходимости согласованных действий 5-6 наблюдателей на 10-12 аппаратах. Фотометр представляет собой цилиндр а высотой около 30 см и диаметром 6 см (рис.Учет этого ореола совершенно необходим при фотометрии частных фаз, а также при определении интегральной яркости короны (в последнем случае ореол вызывается не Солнцем, а незакрытыми частями хромосферы и внутренней короны). Для малых камер типа ФЭД с фокусным расстоянием объектива в 35 мм шар должен иметь диаметр 3,5 см и помещаться на расстоянии 3,5 м от камеры. Такое расстояние еще допускает осуществление жесткой связи между камерой и шаром в виде металлического стержня, который своей верхней частью, несущей шар, должен скользить по рельсу, проектирующемуся на небесную сферу несколько ниже суточной параллели Солнца. Для камер с большим фокусным расстоянием осуществить жесткую связь камеры с шаром уже не удастся, и шар придется перемещать независимо, каждый раз проверяя правильность установки. Для облегчения наводки к шару можно прикрепить сбоку маленький черный шарик или кружок (в 10 раз меньше главного шара и на расстоянии в 2-3 его диаметра), а к камере - визир на таком же расстоянии от оптической оси камеры.Явление бегущих теней наблюдается обычно за несколько минут до начала полной фазы и через несколько минут после ее конца. Эти тени имеют вид темных полосок, перемещающихся в определенном направлении и особенно хорошо заметных на белом фоне (на прост
План
План
Введение
1 Изучение распределения яркости по небу
2 Распределение яркости по вертикалу Солнца
3 Наблюдения яркости заревого кольца
4 Наблюдения околосолнечного ореола
5 Наблюдения бегущих теней
Введение
Полное солнечное затмение представляет значительный интерес не только для решения астрономических задач, но и для решения некоторых задач атмосферной оптики. Дело в том, что во время полного затмения наблюдатель попадает в совершенно особые условия, когда освещенность небесного свода создается не рассеянием прямых лучей Солнца, а в основном - многократным рассеянием света, приходящего извне конуса лунной тени, от тех слоев воздуха, которые, находясь на значительном расстоянии от наблюдателя, освещаются лучами частично затмившегося Солнца. Получается такая картина (рис. 1).
Наблюдатель, находящийся в точке С внутри конуса лунной тени, получает свет от слоев воздуха АА1, которые, в свою очередь, получают его от слоев ВВ1, освещаемых Солнцем. Нетрудно заметить, что и часть слоев ВВ1, расположенная выше горизонта наблюдателя С1СС2, будет посылать свет в сторону наблюдателя, что создаст яркое кольцо у горизонта (так называемое заревое кольцо). Понятно, что чем шире конус лунной тени, тем более высокие слои атмосферы будут создавать явление заревого кольца. А так как рассеивающая способность воздуха убывает с высотой, яркость заревого кольца будет также убывать с увеличением расстояния его от наблюдателя. Так как во время затмения лунная тень быстро скользит по земной поверхности, расстояние от наблюдателя до любой точки заревого кольца меняется, и поэтому наблюдения заревого кольца могут дать некоторые сведения о рассеивающей способности воздуха на различной высоте.
Наблюдения яркости неба во время затмения, помимо самостоятельного интереса, дают возможность ввести необходимые поправки в фотометрические наблюдения короны. Поэтому эти наблюдения должны непременно сопровождать фотографирование короны с фотометрической целью.
Можно порекомендовать следующие частные задачи из области атмосферной оптики:
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы