Интервальный вариационный ряд. Построение гистограммы плотности относительных частот. Выдвижение гипотезы о законе распределения генеральной совокупности Х. Функция плотности рассматриваемого закона распределения "Построение ее на гистограмме".
При низкой оригинальности работы "Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона", Вы можете повысить уникальность этой работы до 80-100%
Дана выборка из генеральной совокупности случайной величины Х. Выборка содержит 100 наблюдаемых значений, поэтому выборка имеет объем n=100. Опытные данные объединяем в группы так, чтобы в каждой отдельной группе значения вариант будут одинаковы, и тогда можно определить число, показывающее, сколько раз встречается соответствующая варианта в определенной (соответствующей) группе. Т.к. согласно теореме Бернулли имеем, что т.е. выборочная относительная частота сходится по вероятности соответствующей вероятности, тогда из условия: Интервальным вариационным рядом распределения называется упорядоченная совокупность частичных интервалов значений С.В. с соответствующими им частотами или относительными частотами. После разбиения на частичные интервалы просматриваем ранжированную выборку и определяем, сколько значений признака попало в каждый частичный интервал, включая в него те значения, которые ? нижней границы и меньше верхней границы.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы