Производная спектрометрия и её возможности в химическом анализе - Курсовая работа

бесплатно 0
4.5 119
Дифференциальный фотометрический анализ и понятие о производной спектрофотометрии концентраций. Аппаратура, применяемая для спектрофотометрического анализа, её чувствительность для исследований спектрофотометрами Cary, СФ-2000, СФ-2000-01, СФ-2000-02.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Аналитическая химия является фундаментальной химической наукой, занимающей видное место в ряду других химических дисциплин. Вместе с тем аналитическая химия теснейшим образом связана с повседневной практикой, поскольку без данных анализа о содержании в сырье или ином объекте основных компонентов и примесей невозможно грамотное проведение технологического процесса в любой отрасли промышленности. Данные химического анализа требуются при решении экономических и других важных вопросов. Одним из важных вопросов, которые успешно решает аналитическая химия, является анализ объектов окружающей среды. В классических методах химического анализа в качестве такого свойства используется или масса осадка (гравиметрический метод), или объем реактива, израсходованный на реакцию (титриметрический анализ).Этот метод, применяемый чаще других и наиболее совершенный среди методов абсорбционного молекулярного анализа, основан на использовании специальных спектральных приборов - спектрофотометров, позволяющих регистрировать световые потоки в широком интервале изменения длин волн от-185 нм до ~1100 нм, т.е. в УФ, видимой и ближней ИК области спектра, и обеспечивающих высокую степень монохроматичности света (-0,2-5 нм), проходящего через анализируемую среду. Монохроматизованный световой поток проходит после этого через кюветное отделение 3, в котором устанавливаются кюветы с анализируемым раствором и раствором сравнения («нулевым» раствором). Пройдя через кюветы с растворами, световой поток попадает на фотоэлементы приемника излучения 4, в котором энергия светового потока преобразуется в фототок, усиливаемый в блоке усилителя 5, после чего усиленный электрический сигнал регистрируется в блоке регистратора 6 либо в виде спектральной кривой, либо по показанию отсчитывающего устройства. В качестве источника излучения в спектрофотометрах используют лампы накаливания при работе в видимой области спектра, в которой они обеспечивают непрерывный световой поток (а не линейчатый, даваемый ртутной лампой), и водородные либо дейтериевые лампы - при работе в УФ диапазоне спектра (-200-350 нм). При использовании спектрофотометров, работающих по однолучевой схеме, в световой поток в кюветном отделении попеременно вносят кювету с раствором сравнения (нулевым раствором) и кювету с анализируемым раствором.Для получения оптимальных результатов при фотометрических измерениях предварительно проводят фотометрическую реакцию (если это необходимо), подбирают аналитическую длину волны, концентрацию измеряемого раствора, толщину поглощающего слоя, раствор сравнения (нулевой раствор). Аналитическая длина волны - это длина волны, при которой проводят фотометрические измерения. Для выбора аналитической длины волны вначале получают спектр поглощения раствора определяемого вещества в возможно более широком спектральном диапазоне и измеряют длину волны, соответствующую максимуму самой интенсивной полосы поглощения. Проводить фотометрические измерения на спаде полосы поглощения не рекомендуется. Ранее указывалось, что фотометрические измерения целесообразно проводить в интервале изменения оптической плотности А от 0,2 до 0,6, так как при этом систематическая ошибка фотометрических измерений наименьшая.По результатам измерения оптической плотности А пяти-шести эталонных растворов с различной точно известной концентрацией с при аналитической длине волны строят градуировочный график в координатах А - с (рис. Измеряют оптическую плотность Ах анализируемого раствора"в тех же условиях, в которых измеряли оптическую плотность эталонных растворов (кювета, аналитическая длина волны, раствор сравнения). Готовят стандарт (стандартный раствор) - раствор с точно известной концентрацией определяемого вещества с(ст) - и измеряют его оптическую плотность А(ст) при аналитической длине волны по отношению к раствору сравнения. Измеряют оптическую плотность А(х) анализируемого раствора с искомой концентрацией с(х) определяемого вещества при аналитической длине волны в кювете с толщиной поглощающего слоя l. Готовят два раствора: первый - анализируемый раствор с искомой концентрацией с(х) определяемого вещества и второй - анализируемый раствор, к которому прибавили точно известное количество (добавка стандарта) определяемого вещества, так что его концентрация во втором растворе равна с(х) с, где с - точно известное увеличение концентрации за счет прибавления добавки стандарта.Описанный выше метод фотометрии иногда называют непосредственной спектрофотометрией (фотометрией), когда светопоглощение анализируемого раствора измеряют по отношению к раствору сравнения, оптическая плотность которого близка к нулю (принимается равной нулю). Если светопоглощение анализируемого раствора измеряют по отношению к среде сравнения (раствор сравнения, диафрагма, оптический клин), оптическая плотность А которой существенно больше нуля (например, А = 0,1-1,0), то такой спектрофотометрический метод называют дифференциальной спектрофотометрией, или дифференциальным фотометрическим анализом. Дифференц

План
Содержание

Введение

Глава 1. Спектрофотометрия

1.1 Количественный фотометрический анализ

1.1.1 Условия фотометрического определения

1.1.2 Нахождение концентрации определяемого вещества

1.2 Дифференциальный фотометрический анализ. Понятие о производной спектрофотометрии

1.2.1 Дифференциальная спектрофотометрия (фотометрия)

1.2.2 Понятие о производной спектрофотометрии

1.3 Чувствительность фотометрического анализа

Глава 2. Аппаратура, применяемая для спектрофотометрического анализа

2.1 Схемы применяемой аппаратуры

2.2 Аппаратурное оформление

2.2.1 Cary - спектрофотометры нового тысячелетия

2.2.2 Спектрометры исследовательского класса для рутинных применений

2.2.4 Исследовательские спектрометры

2.2.5 Спектрофотометры СФ-2000, СФ-2000-01, СФ-2000-02

Заключение

Литература

Введение
Аналитическая химия является фундаментальной химической наукой, занимающей видное место в ряду других химических дисциплин. Вместе с тем аналитическая химия теснейшим образом связана с повседневной практикой, поскольку без данных анализа о содержании в сырье или ином объекте основных компонентов и примесей невозможно грамотное проведение технологического процесса в любой отрасли промышленности. Данные химического анализа требуются при решении экономических и других важных вопросов.

Предметом аналитической химии является разработка методов анализа и практическое выполнение анализов, а также широкое исследование теоретических основ аналитических методов.

Одним из важных вопросов, которые успешно решает аналитическая химия, является анализ объектов окружающей среды. Заметно возросла роль аналитической химии в данном вопросе в связи с тем, что больше внимания стало уделяться состоянию и контрою за загрязнением окружающей среды, контролю за технологическими выбросами, сточными водами.

Все методы анализа основаны на зависимости физико-химического свойства вещества, называемым аналитическим сигналом или просто сигналом, от природы вещества и его содержания в анализируемой пробе. В классических методах химического анализа в качестве такого свойства используется или масса осадка (гравиметрический метод), или объем реактива, израсходованный на реакцию (титриметрический анализ). Однако, химические методы анализа не в состоянии были удовлетворить многообразные запросы практики, особенно возросшие как результат научно-технического прогресса и развития других отраслей науки и техники. Наряду с черной и цветной металлургией, машиностроением, химической промышленностью, другими традиционными отраслями большое значение для промышленного потенциала страны стало освоение энергии атомной энергии, энергии синтеза, работа со сверхпроводниками, прогресс полупроводниковой промышленности, бурный рост, почти что взрыв развития микроэлектроники, применение чистых и сверхчистых веществ в технике. Развитие этих отраслей поставило задачу перед аналитической химией снизить предел обнаружения до 10-5 и 10 -10 % [1]

Важной особенностью физико-химических методов анализа является: экспрессность - высокий темп получения результатов;

избирательность - точное и сверхточное обнаружение примесей;

недеструктивность - выполнение анализа вещества без разрушения образца;

дистанционность - возможность проведения анализа на значительном расстоянии от исследуемого вещества;

локальность - определение элемента в данной точке образца.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?