Корені многочленів. Пошук коренів рівняння з достатнім ступенем точності. Важлива проблема механіки – теорія стійкості і з‘ясування умов, коли усі корені даного алгебраїчного рівняння мають від‘ємні дійсні частини. Число дійсних коренів. Правило Декарта.
При низкой оригинальности работы "Програма для знаходження нижньої та верхньої межі дійсних коренів", Вы можете повысить уникальность этой работы до 80-100%
Для многочленів з дійсними коефіцієнтами розроблялися методи визначення числа їхніх дійсних коренів, шукалися границі, між якими ці корені можуть знаходитися. Нарешті, багато досліджень було присвячено методам наближеного обчислення коренів: у технічних додатках звичайно досить знати лише наближені значення коренів з деякою заздалегідь точністю і якби, наприклад, корені многочлена записувалися в радикалах, ці радикали все рівно були б замінені їх наближеними значеннями. Один з шляхів уточнення, звуження меж, між якими слід шукати дійсні корені, полягає в тому, щоб окремо знаходити нижню і верхню межі додатних коренів та нижню і верхню межі відємних коренів даного многочлена, тобто такі чотири числа , що всі додатні корені многочлена лежать в інтервалі , а всі відємні -. Аналогічно, заміна переводить рівняння в рівняння , корені якого звязані з відповідними коренями рівняння рівністю . Коли наперед відомо, що всі корені даного рівняння дійсні, то правило Декарта дає точну відповідь на питання про число дійсних коренів, а саме: число додатних коренів дорівнює числу змін знаків у ряді коефіцієнтів многочлена , а число відємних коренів - числу змін знаків у ряді коефіцієнтів многочлена .В курсовій роботі були розглянуті методи наближеного пошуку меж та самих коренів многочлена з дійсними коренями.
План
Зміст
Вступ 3
Теоретична частина 4
Межі дійсних коренів 4
Число дійсних коренів 6
Практична частина 9
Опис програми 9
Текст програми 9
Висновок 14
Література 15
Вступ
Вывод
В курсовій роботі були розглянуті методи наближеного пошуку меж та самих коренів многочлена з дійсними коренями. Можна знайти багато інших методів наближеного знаходження коренів. Одним з них, найбільш досконалим є метод Лобачевського. Цей метод дозволяє знаходити наближення значення всіх коренів відразу, у тому числі і комплексних, причому не потребує відділення коренів; однак він звязаний з великими обчисленнями.
Список литературы
1. А.Г. Курош "Курс высшей алгебры", "Наука", Москва 1975
2. С.Т. Завало, В.М. Костарчук, Б.И. Хацет "Алгебра и теория чисел", Том 1,"Высшая школа", Киев 1974
3. С.Т. Завало, В.М. Костарчук, Б.И. Хацет "Алгебра и теория чисел", Том 2,"Высшая школа", Киев 1976
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы