Прогноз объема продаж - Курсовая работа

бесплатно 0
4.5 40
Сущность трендовых моделей и их использование для прогнозов. Алгоритм построения прогнозной модели. Применение алгоритма на примере исследования информации об объемах сбыта мороженого "Пломбир". Определение величины сезонной компоненты в MS Excel.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Разработаны соответствующие программные пакеты, но на практике они, к сожалению, не всегда доступны рядовому пользователю, а, в то же время, многие из этих проблем можно достаточно успешно решать, используя методы исследования операций, в частности имитационное моделирование, теорию игр, регрессионный и трендовый анализ, реализуя эти алгоритмы в широко известном и распространенном пакете прикладных программ MS Excel. Дело в том, что понятие «сезон» в прогнозировании применим к любым систематическим колебаниям. И, если удается выявить величину цикла этих колебаний, то такой временной ряд можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей. 4. применить теоретические положения об использовании трендовых моделей для прогнозов к статистическим данным компании «КЛАД», на основании чего построить прогноз объемов продаж на следующий сезон. Прогнозирование на основе анализа временных рядов предполагает, что происходившие изменения в объемах продаж могут быть использованы для определения этого показателя в последующие периоды времени.Проанализировав теоретические аспекты рассматриваемого вопроса и проделав работу по построению прогноза объема продаж конкретного предприятия с помощью определения тренда, возможно сделать следующие выводы: Прогнозирование объема продаж - неотъемлемая часть процесса принятия решения; это систематическая проверка ресурсов компании, позволяющая более полно использовать ее преимущества и своевременно выявлять потенциальные угрозы. Компания должна постоянно следить за динамикой объема продаж и альтернативными возможностями развития рыночной ситуации с тем, чтобы наилучшим образом распределять имеющиеся ресурсы и выбирать наиболее целесообразные направления своей деятельности. Для учета новых экономических тенденций рекомендуется регулярно уточнять модель на основе мониторинга фактически полученных объемов продаж, добавляя их или заменяя ими данные статистической базы, на основе которой строится модель.

Введение
На сегодняшний день наука достаточно далеко продвинулась в разработке технологий прогнозирования. Специалистам хорошо известны методы нейросетевого прогнозирования, нечеткой логики и т.п. Разработаны соответствующие программные пакеты, но на практике они, к сожалению, не всегда доступны рядовому пользователю, а, в то же время, многие из этих проблем можно достаточно успешно решать, используя методы исследования операций, в частности имитационное моделирование, теорию игр, регрессионный и трендовый анализ, реализуя эти алгоритмы в широко известном и распространенном пакете прикладных программ MS Excel.

В связи с этим актуальность изучения методов алгоритма прогнозирования, исследованных в данной работе не вызывает сомнения.

В работе представлен один из возможных алгоритмов построения прогноза объема реализации для продуктов с сезонным характером продаж. Сразу следует отметить, что перечень таких товаров значительно шире, чем это кажется. Дело в том, что понятие «сезон» в прогнозировании применим к любым систематическим колебаниям. Например, если речь идет об изучении товарооборота в течение недели, под термином «сезон» понимается один день. Кроме того, цикл колебаний может существенно отличаться (как в большую, так и в меньшую сторону) от величины «один год». И, если удается выявить величину цикла этих колебаний, то такой временной ряд можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.

Целью работы стали систематизация теоретических данных по выбранной теме и их применение на конкретном предприятии. Для достижения этой цели были поставлены следующие задачи: 1. определить значение прогнозирования на современном этапе;

2. рассмотреть сущность трендовых моделей;

3. выявить методы использования трендовых моделей в прогнозировании объемов продаж;

4. применить теоретические положения об использовании трендовых моделей для прогнозов к статистическим данным компании «КЛАД», на основании чего построить прогноз объемов продаж на следующий сезон.

Информационной базой для написания работы стали учебно-методические пособия и периодическая литература по данному вопросу отечественных авторов. Использование литературы именно периодического характера представляется наиболее важным при написании данной работы. Это суждение основано на том, что наряду со знанием теоретических основ изучаемого вопроса, необходимо учесть его динамический характер и рассмотреть самый новый взгляд на методологию составления прогнозов с использованием трендовых моделей, разработанную в самое последнее время.

Работа имеет не только теоретическое, но и высокое практическое значение. По сути, она является методическим пособием по применению алгоритма прогнозирования объема продаж с использованием MS Excel, который может быть по аналогии использован не только на упомянутом предприятии, но и в других отраслях народного хозяйства.

1. Использование трендовых моделей в прогнозировании объемов продаж

1.1 Сущность трендовых моделей и их использование для прогнозов

Одна из важнейших групп методов прогнозирования основана на анализе временных рядов.

Прогнозирование на основе анализа временных рядов предполагает, что происходившие изменения в объемах продаж могут быть использованы для определения этого показателя в последующие периоды времени. Временные ряды, обычно служат для расчета четырех различных типов изменений в показателях: трендовых, сезонных, циклических и случайных.

Тренд - это изменение, определяющее общее направление развития, основную тенденцию временных рядов. Выявление основной тенденции развития (тренда) называется выравниванием временного ряда, а методы выявления основной тенденции - методами выравнивания.

Один из наиболее простых приемов обнаружения общей тенденции развития явления - укрупнение интервала динамического ряда. Смысл этого приема заключается в том, что первоначальный ряд динамики преобразуется и заменяется другим, уровни которого относятся к большим по продолжительности периодам времени.

Выявление основной тенденции может быть осуществлено также методом скользящей средней. Для определения скользящей средней формируются укрупненные интервалы, состоящие из одинакового числа уровней. Каждый последующий интервал получаем, постепенно передвигаясь от начального уровня динамического ряда на одно значение. По сформированным укрупненным данным рассчитываем скользящие средние, которые относятся к середине укрупненного интервала.

Изучение основной тенденции развития методом скользящей средней является эмпирическим приемом предварительного анализа. Для того чтобы дать количественную модель изменений динамического ряда, используется метод аналитического выравнивания. В этом случае фактические уровни ряда заменяются теоретическими, рассчитанными по определенной кривой, отражающей общую тенденцию изменения показателей во времени. Таким образом, уровни динамического ряда рассматриваются как функция времени: Yt = f(t)

Наиболее часто могут использоваться следующие функции: 1. при равномерном развитии - линейная функция: Yt = b0 b1t

2. при росте с ускорением: парабола второго порядка: Yt = b0 b1t b2t2 кубическая парабола: Yt = b0 b1t b2t2 b3t3

3. при постоянных темпах роста - показательная функция: Yt = b0b1t

5. при снижении с замедлением - гиперболическая функция: Yt = b0 b1x1/t

Однако аналитическое выравнивание содержит в себе ряд условностей: развитие явлений обусловлено не только тем, сколько времени прошло с отправного момента, а и тем, какие силы влияли на развитие, в каком направлении и, с какой интенсивностью. Развитие явлений во времени выступает как внешнее выражение этих сил.

Оценки параметров b0, b1,… bn находятся методом наименьших квадратов, сущность которого состоит в отыскании таких параметров, при которых сумма квадратов отклонений расчетных значений уровней, вычисленных по искомой формуле, от их фактических значений была бы минимальной.

Для сглаживания экономических временных рядов нецелесообразно использовать функции, содержащие большое количество параметров, так как полученные таким образом уравнения тренда (особенно при малом числе наблюдений) будут отражать случайные колебания, а не основную тенденцию развития явления.

Подбор вида функции, описывающей тренд, параметры которой определяются методом наименьших квадратов, производится в большинстве случаев эмпирически, путем построения ряда функций и сравнения их между собой по величине среднеквадратической ошибки.

Разность между фактическими значениями ряда динамики и его выровненными значениями характеризует случайные колебания (иногда их называют остаточные колебания или статистические помехи). В некоторых случаях последние сочетают тренд, циклические колебания и сезонные колебания.

Сезонные колебания - повторяющиеся из года в год изменения показателя в определенные промежутки времени. Наблюдая их в течение нескольких лет для каждого месяца (или квартала), можно вычислить соответствующие средние, или медианы, которые принимаются за характеристики сезонных колебаний.

Периодические колебания в розничной торговле можно обнаружить и в течение недели (например, перед выходными днями увеличивается продажа отдельных продуктов питания), и в течение какой-либо недели месяца. Однако самые значительные сезонные колебания наблюдаются в определенные месяцы года. При анализе сезонных колебаний обычно рассчитывается индекс сезонности, который используется для прогнозирования исследуемого показателя.

В самой простой форме индекс сезонности рассчитывается как отношение среднего уровня за соответствующий месяц к общему среднему значению показателя за год (в процентах). Все другие известные методы расчета сезонности различаются по способу расчета выровненной средней. Чаще всего используются либо скользящая средняя, либо аналитическая модель проявления сезонных колебаний.

Большинство методов предполагает использование компьютера.

Относительно простым методом расчета индекса сезонности является метод центрированной скользящей средней.

Используя метод скользящей средней, необходимо последовательно осуществить следующие этапы: 1. решить, данные, за сколько лет должны быть включены в расчет. Можно использовать данные за один год, но для большей достоверности расчетов лучше использовать данные, по крайней мере, за два года, а если сезонные колебания значительны, - то и более.

2. рассчитать средний объем продаж за месяц по данным;

3. рассчитать индекс сезонности для конкретного месяца;

4. повторить этапы 2 и 3 для этого же месяца следующего года;

5. определить средний индекс в этом месяце по данным за два года;

6. рассчитать соответствующие индексы для всех месяцев;

7. обобщить данные о силе колеблемости показателей динамического ряда изза их сезонного характера. При этом используется среднее квадратическое отклонение индексов сезонности (в процентах) от 100%.

Сравнение средних квадратических отклонений, вычисленных за разные периоды времени, показывает сдвиги в сезонности.

Другим методом расчета индексов сезонности, часто используемым в различного рода экономических исследованиях, является метод сезонной корректировки, известный в компьютерных программах как метод переписи (Census Method II). Он является своего рода модификацией метода скользящих средних. Специальная компьютерная программа элиминирует трендовую и циклическую компоненты, используя целый комплекс скользящих средних. Кроме того, из средних сезонных индексов удалены и случайные колебания, поскольку под контролем находятся крайние значения признаков.

Расчет индексов сезонности является первым этапом в составлении прогноза. Обычно этот расчет проводится вместе с оценкой тренда и случайных колебаний и позволяет корректировать прогнозные значения показателей, полученных по тренду. При этом необходимо учитывать, что сезонные компоненты могут быть аддитивными и мультипликативными.

Таким образом, временной ряд, характеризующий величину цикла систематических колебаний, можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.

Итак, временной ряд - это последовательность наблюдений некоторой величины в последовательные моменты времени.

Аддитивная модель представляет собой обобщение множественной регрессии, которая является частным случаем общей линейной модели.

Аддитивную модель можно представить в виде формулы: F = T S E где F - прогнозируемое значение; Т - тренд; S - сезонная компонента; Е - ошибка прогноза.

Применение мультипликативных моделей обусловлено тем, что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Эти модели можно представить формулой:

F = T x S x E

На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной модели она возрастает, или убывает. Графически это выражается в изменении амплитуды колебания сезонного фактора. Это показано на рис. 1.

Рисунок 1. Аддитивная и мультипликативная модели прогнозирования

Если бы на изучаемом интервале времени коэффициенты уравнения регрессии, которое описывает тренд, оставались бы неизменными, то для построения прогноза достаточно было бы использовать метод наименьших квадратов. Однако в течение исследуемого периода коэффициенты могут меняться. Естественно, что в таких случаях более поздние наблюдения несут большую информационную ценность по сравнению с более ранними наблюдениями, а, следовательно, им нужно присвоить наибольший вес. Именно таким принципам и отвечает метод экспоненциального сглаживания, который может быть использован для краткосрочного прогнозирования объема продаж. Расчет осуществляется с помощью экспоненциально-взвешенных скользящих средних:

Zt = a x Yt (1 - a) x Zt -1 где: Z - сглаженный (экспоненциальный) объем продаж;

t - период времени;

a - константа сглаживания;

Y - фактический объем продаж.

Последовательно используя эту формулу, экспоненциальный объем продаж Zt можно выразить через фактические значения объема продаж Y:

где

SO - начальное значение экспоненциальной средней.

При построении прогнозов с помощью метода экспоненциального сглаживания одной из основных проблем является выбор оптимального значения параметра сглаживания a. Ясно, что при разных значениях a результаты прогноза будут различными. Если a близка к единице, то это приводит к учету в прогнозе в основном влияния лишь последних наблюдений; если a близка к нулю, то веса, по которым взвешиваются объемы продаж во временном ряду, убывают медленно, т.е. при прогнозе учитываются все (или почти все) наблюдения. Если нет достаточной уверенности в выборе начальных условий прогнозирования, то можно использовать итеративный способ вычисления a в интервале от 0 до 1. Существуют специальные компьютерные программы для определения этой константы.

Обобщая результаты прогнозирования с помощью методов временных рядов, необходимо оценить точность расчетов, на основании которой можно сделать вывод об аппроксимирующей способности моделей.

Объемы продаж большинства компаний показывают значительные колебания. Они растут и падают в зависимости от общей ситуации в бизнесе, уровня спроса на продукты, производимые компаниями, деятельности конкурентов и других факторов. Колебания, отражающие конъюнктурные циклы перехода от более или менее благоприятной рыночной ситуации к кризису, депрессии, оживлению и снова к благоприятной ситуации, называются циклическими колебаниями. Существуют различные классификации циклов, их последовательности и продолжительности. Например, выделяются двадцатилетние циклы, обусловленные сдвигами в воспроизводственной структуре сферы производства; циклы Джанглера (7-10 лет), проявляющиеся как итог взаимодействия денежно-кредитных факторов; циклы Катчина (3-5 лет), обусловленные динамикой оборачиваемости запасов; частные хозяйственные циклы (от 1 до 12 лет), обусловленные колебаниями инвестиционной активности.

Методика выявления цикличности заключается в следующем. Отбираются рыночные показатели, проявляющие наибольшие колебания, и строятся их динамические ряды за возможно более продолжительный срок. В каждом из них исключается тренд, а также сезонные колебания. Остаточные ряды, отражающие только конъюнктурные или чисто случайные колебания, стандартизируются, т.е. приводятся к одному знаменателю. Затем рассчитываются коэффициенты корреляции, характеризующие взаимосвязь показателей. Многомерные связи разбиваются на однородные кластерные группы. Нанесенные на график кластерные оценки должны показать последовательность изменения основных рыночных процессов и их движение по фазам конъюнктурных циклов.

1.2 Алгоритм построения прогнозной модели

Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели: 1. Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.

2. Вычитая из фактических значений объемов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.

3. Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели.

4. Строится модель прогнозирования: F = T S ± E где: F - прогнозируемое значение;

Т - тренд;

S - сезонная компонента;

Е - ошибка модели.

5. На основе модели строится окончательный прогноз объема продаж. Для этого предлагается использовать методы экспоненциального сглаживания, что позволяет учесть возможное будущее изменение экономических тенденций, на основе которых построена трендовая модель. Сущность данной поправки заключается в том, что она нивелирует недостаток адаптивных моделей, а именно, позволяет быстро учесть наметившиеся новые экономические тенденции.

Fпр t = a Fф t-1 (1 - a) Fm t где: Fпр t - прогнозное значение объема продаж;

Fф t-1 - фактическое значение объема продаж в предыдущем году;

Fm t - значение модели;

а - константа сглаживания.

Практическая реализация данного метода выявила его следующие особенности: · для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;

· применение полиноминального тренда вместо линейного позволяет значительно сократить ошибку модели;

· при наличии достаточного количества данных метод дает хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.

2. Применение алгоритма на примере исследования информации об объемах сбыта мороженого «Пломбир» фирмы «КЛАД», г. Кунгур Пермский край

Исходные данные: объемы реализации продукции за два сезона.

В качестве исходной информации для прогнозирования была использована информация об объемах сбыта мороженного «Пломбир» фирмы «КЛАД» г. Кунгура Пермского края. Данная статистика характеризуется тем, что значения объема продаж имеют выраженный сезонный характер с возрастающим трендом.

Исходная информация представлена в таблице 1.

Таблица 1. Фактические объемы реализации продукции

Задача: составить прогноз продаж продукции на следующий год по месяцам.

Реализуем алгоритм построения прогнозной модели, описанной выше. Решение данной задачи осуществим в среде MS Excel, что позволит существенно сократить количество расчетов и время построения модели.

2.1 Определение тренда

Определяем тренд, наилучшим образом аппроксимирующий фактические данные. Для этого используем полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.

На рисунке показано, что полиномиальный тренд аппроксимирует фактические данные гораздо лучше, чем предлагаемый обычно в литературе линейный. Коэффициент детерминации полиномиального тренда (0,7435) гораздо выше, чем линейного (4Е - 05). Для расчета тренда рекомендуется использовать опцию «Линия тренда» MS Excel.

Опция «Линия тренда»

Применение других типов тренда (логарифмический, степенной, экспоненциальный, скользящее среднее) также не дает эффективного результата. Они неудовлетворительно аппроксимируют фактические значения, коэффициенты их детерминации ничтожно малы: · логарифмический R2 = 0,0166;

· степенной R2 = 0,0197;

· экспоненциальный R2 = 8Е - 05.

2.2 Определение величины сезонной компоненты

Вычитая из фактических объемов продаж значения тренда, определяем величины сезонной компоненты, используя при этом пакет программных данных MS Excel.

Расчет значений сезонной компоненты в MS Excel

Итоги расчета значений сезонной компоненты приведем в таблице: Таблица 2. Расчет значений сезонной компоненты

Таблица 3. Расчет средних значений сезонной компоненты

2.3 Расчет ошибок модели

Рассчитываем ошибки модели как разности между фактическими значениями и значениями модели.

Таблица 4. Расчет ошибок

Находим среднеквадратическую ошибку модели (Е) по формуле:

Е = ? О2: ? (Т S)2 где: Т - трендовое значение объема продаж;

S - сезонная компонента;

О - отклонения модели от фактических значений.

Е = 0,003739 или 0,37%.

Величина полученной ошибки позволяет говорить, что построенная модель хорошо аппроксимирует фактические данные, то есть она вполне отражает тенденции, определяющие объем продаж, и является предпосылкой для построения прогнозов высокого качества.

Построим модель прогнозирования: F = T S ± E

2.4 Построение прогноза объемов продаж

На основе модели строим окончательный прогноз объема продаж. Для смягчения влияния прошлых тенденций на достоверность прогнозной модели, сочетаем трендовый анализ с экспоненциальным сглаживанием. Это позволит нивелировать недостаток адаптивных моделей, то есть учесть наметившиеся новые экономические тенденции.

Fпр t = a Fф t-1 (1 - a) Fm t где: Fпр t - прогнозное значение объема продаж;

Fф t-1 - фактическое значение объема продаж в предыдущем году;

Fm t - значение модели;

а - константа сглаживания.

Константу сглаживания рекомендуется определять методом экспертных оценок, как вероятность сохранения существующей рыночной конъюнктуры, то есть, если основные характеристики изменяются (колеблются) с той же скоростью (амплитудой), что и прежде, значит, предпосылок к изменению рыночной конъюнктуры нет, и, следовательно, а = 1, если наоборот, то а = 0.

Таким образом, прогноз на январь третьего сезона определяется следующим образом.

Определяем прогнозное значение модели: Fm t = 1924,92 162,44 = 2087 ± 7,8 (тыс. руб.)

Фактическое значение объема продаж в предыдущем году (Fф t-1) составило 2361 тыс. руб. Принимаем коэффициент сглаживания 0,8. Получим прогнозное значение объема продаж: Fпр t = 0,8 х 2361 (1 - 0,8) х 2087 = 2306 (тыс. руб.)

Для учета новых экономических тенденций рекомендуется регулярно уточнять модель на основе мониторинга фактически полученных объемов продаж, добавляя их или заменяя ими данные статистической базы, на основе которой строится модель.

Кроме того, для повышения надежности прогноза рекомендуется строить все возможные сценарии прогноза и рассчитывать длительный интервал прогноза.

Вывод
прогноз тренд сезонный модель

Проанализировав теоретические аспекты рассматриваемого вопроса и проделав работу по построению прогноза объема продаж конкретного предприятия с помощью определения тренда, возможно сделать следующие выводы: Прогнозирование объема продаж - неотъемлемая часть процесса принятия решения; это систематическая проверка ресурсов компании, позволяющая более полно использовать ее преимущества и своевременно выявлять потенциальные угрозы. Компания должна постоянно следить за динамикой объема продаж и альтернативными возможностями развития рыночной ситуации с тем, чтобы наилучшим образом распределять имеющиеся ресурсы и выбирать наиболее целесообразные направления своей деятельности.

Для учета новых экономических тенденций рекомендуется регулярно уточнять модель на основе мониторинга фактически полученных объемов продаж, добавляя их или заменяя ими данные статистической базы, на основе которой строится модель.

Кроме того, для повышения надежности прогноза рекомендуется строить все возможные сценарии прогноза и рассчитывать длительный интервал прогноза.

Практическая реализация рассмотренного метода выявила его следующие особенности: · для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;

· применение полиноминального тренда вместо линейного позволяет значительно сократить ошибку модели;

· при наличии достаточного количества данных метод дает хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.

Список литературы
1. Алисинская Т.В., Сербин В.Д., Катаев А.В. Учебно-методическое пособие по курсу «Экономико-математические методы и модели. Линейное программирование». Таганрог. 2001.

2. Бушуева Л.И. Метод прогнозирования объема продаж // Маркетинг в России и за рубежом. 2004. №2.

3. Кошечкин С.А. Алгоритм прогнозирования объема продаж в MS Excel // http://www.cfin.ru. 24.08.2008.

4. Кулакова О. Методы прогнозирования. Анализ аддитивной модели // Бюджетирование и финансовый менеджмент. 2000. №2.

5. Лобанова Е. Прогнозирование с учетом экономического роста // Экономические науки. 2002. №1.

6. Орлова И.В. Экономико-математические методы и модели. Выполнение расчетов в среде Excel: Практикум. М. 2000.

7. Статистический словарь / Под ред. М.А. Королева. М. 1989.

Размещено на

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?