Профилактика затруднений школьников при обучении математике на примере темы "Уравнения с переменной в знаменателе" - Курсовая работа

бесплатно 0
4.5 213
Обзор учебников и методов изучения темы. Главные принципы при решении уравнений с переменной в знаменателе. Методические рекомендации для проведения пропедевтики темы, ее изучения и последующего закрепления. Подходы к обоснованию алгоритмов решения.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
С проблемой деления на ноль учащиеся знакомятся еще в начальной школе, изучая операцию деления. Это связано с тем, что при делении на некоторое число используется умножение на число, обратное делителю, а число ноль, как известно из теории чисел, обратного элемента на множестве рациональных чисел не имеет. Для уменьшения формализма при решении таких уравнений и затруднений при их решении в данной работе приводятся методические рекомендации для проведения пропедевтики темы, ее изучения и последующего закрепления. Цель: разработать методические рекомендации, направленные на повышение качества знаний учащихся по теме «Уравнения с переменной в знаменателе», проведение пропедевтической работы с учащимися по теме, повторение изученного материала темы в ходе изучения других разделов алгебры.В каждом из учебников выбраны темы, каким-либо образом затрагивающие изучаемый раздел. Случай деления на 0 не рассматривается, дана только краткая памятка: 2. Дробные выражения: Деление на 0 не упоминается. Уравнения с 1 переменной и его корни: «Если обе части уравнения умножить или разделить на одно и то же отличное от 0 число, то получится уравнение, равносильное данному». Уравнение с одной переменной: задания вида «укажите область определения уравнения»: 3.Но уравнение (2) может быть не равносильно исходному, так как мы умножили обе его части не на число, отличное от нуля, а на выражение, содержащее переменную, которое может обращаться в 0. Может ли при переходе от уравнения (1) к уравнению (2) произойти потеря или приобретение корней? Так как в результате преобразования суммы дробей в дробь мы получили выражение с той же областью определения и тождественно равное исходному выражению на этой области, то уравнение (3) равносильно уравнению (2), а следовательно, и уравнению (1). (4) выражение дробью и сократив эту дробь, мы получим уравнение х (х - 2) = 0, (5) не равносильное уравнению (4). Уравнение (7) не равносильно уравнению (6), так как существует такое значение переменной х (число 3), которое удовлетворяет уравнению (7), но не удовлетворяет уравнению (6).Во-первых, разделить некоторое натуральное число на 0 значит узнать, сколько раз 0 содержится в , сколько раз надо взять слагаемым 0, чтобы получить ; ясно, что сколько бы нулей мы ни брали, сложение их не даст ничего, кроме 0; нельзя собрать рублей, если с каждого брать по 0 рублей. Во-вторых, разделить на 0 значит, найти такое число, которое при умножении на 0 даст , но любое число при умножении на 0 дает 0, а потому частного от деления на 0 не существует. Пример обоснования этого факта из учебника Дорофеева: «Если бы захотели, например, найти частное 7:0, то это означало бы, что нужно найти такое число, которое при умножении на 0 даст 7. Проблема решается введением в систему упражнений подобных заданий с требованием обоснования полученного результата: Это задание требует знания определения дроби, в котором заложено отличие знаменателя от 0, правила деления дробей, а также факта невозможности деления на 0, доказанного в предыдущем пункте. Не смотря на то, что случай переменной в знаменателе здесь еще не используется, следует обратить внимание учащихся на действия с уравнениями, а именно: «Если обе части уравнения умножить или разделить на одно и то же отличное от 0 число, то получится уравнение, равносильное данному».Уравнения с переменной в знаменателе - сложная для усвоения тема, она требует обширных знаний, умений и навыков в решении линейных уравнений, преобразованию многочленов и алгебраических дробей. Для ее понимания необходимы навыки в выполнении таких заданий, как: найти множество допустимых значений переменной, упростить дробное выражение.

План
Оглавление

Введение

Глава 1. Обзор учебников и методов изучения темы

1. Обзор учебников

2. Обзор методов изучения темы

Глава 2. Методические рекомендации по изучению темы

Заключение

Список литературы

Введение
С проблемой деления на ноль учащиеся знакомятся еще в начальной школе, изучая операцию деления. Это связано с тем, что при делении на некоторое число используется умножение на число, обратное делителю, а число ноль, как известно из теории чисел, обратного элемента на множестве рациональных чисел не имеет. Но введение строгой аксиоматической теории в школьном курсе математики невозможно, поэтому проблема требует других, более понятных для школьника подходов.

Главным принципом при решении уравнений с переменной в знаменателе является учет именно этого факта, поэтому данная тема нуждается в пропедевтике. Анализ учебников математики (см далее.) показал, что во всех учебниках проблеме деления на 0 не отдается должного внимания. Как следствие - тема «уравнения с переменной в знаменателе» становится сложной и не доступной пониманию учащимся. Для уменьшения формализма при решении таких уравнений и затруднений при их решении в данной работе приводятся методические рекомендации для проведения пропедевтики темы, ее изучения и последующего закрепления.

Объектом работы является преподавание математики и алгебры в 5 - 9 классах основной школы.

Предметом - затруднения школьников при обучении математике, а именно: проблемы, связанные с изучением темы «Уравнения с переменной в знаменателе».

Цель: разработать методические рекомендации, направленные на повышение качества знаний учащихся по теме «Уравнения с переменной в знаменателе», проведение пропедевтической работы с учащимися по теме, повторение изученного материала темы в ходе изучения других разделов алгебры.

Структура работы: 1. Обзор и анализ материала, предлагаемого к изучению по этой теме в основных школьных учебниках, методы изучения темы.

2. Методические рекомендации по изучению, пропедевтике и повторению материала темы.

Вывод
Уравнения с переменной в знаменателе - сложная для усвоения тема, она требует обширных знаний, умений и навыков в решении линейных уравнений, преобразованию многочленов и алгебраических дробей. Для ее понимания необходимы навыки в выполнении таких заданий, как: найти множество допустимых значений переменной, упростить дробное выражение. Необходимым также является четкое понимание невозможности деления на 0.

Все это достигается путем пропедевтики на этапе изучения соответствующих тем в 5-8 классах, периодическим повторением перечисленных вопросов, отработкой нужных навыков. Перечисленные рекомендации призваны помочь в организации этой работы.

Во время изучения данной темы существует несколько подходов к решению и теоретическому обоснованию алгоритма решения, выбор правильного подхода влияет как на понимание данной темы, так и на восприятие последующих тем и алгоритмов.

Применение навыков решения уравнений с переменной в знаменателе не ограничивается рассмотренными темами, они применяются во многих разделах в процессе дальнейшего изучения предмета. Поэтому, в дальнейшем также необходимо периодически обращаться к этому вопросу с целью повторения.

Список литературы
Частная методика: 1. Методика преподавания математики в средней школе. /Под ред. Мишина В.И. - М.: Просвещение 1987. Талочкин П.Б. Неравенства и уравнения. - М.: Просвещение, 1970.

2. Колягин Ю.М., Луканкин Г.Л. «Основные понятия школьного курса математики» / Пособие для учителей. Под ред. А. И. Макушевича. М., «Просвещение» 1974.

3. Микракова Т.Н. «Развивающие задачи на уроках математики в 5 - 8 классах» / пособие для учителя, Журнал «Квантор», 1991

4. Черкасов Р.С. И др. «Методические разработки по методике преподавания математики в средней школе (4-8 классы)» / МГПИ им. Ленина, Москва 1980.

5. Брадис В.М. «Методика преподавания математики в средней школе» под ред. Маркушева А. И. / Москва, УЧПЕДГИЗ, 1954.

Учебники: 6. Дорофеев Г.В., Суворова С.Б., Шарыгин И.Ф. и др. «Математика 5» / Дрофа, 1996.

7. Истомина Н.Б. «Математика 5 класс» / изд. XXI-век, 2005.

8. Волович М.Б. «Математика 5» / Вентана-Граф; 2003.

9. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. «Математика 6». / Мнемозина, 1997

10. Дорофеев Г.В., Суворова С.Б., Шарыгин И.Ф. и др. «Математика 6» / Дрофа, 1996.

11. Истомина Н.Б. «Математика 6 класс» / изд. XXI-век, 2005.

12. Нурк Э.Р., Тельгмаа А.Э. «Математика 6» / Дрофа, 1996

13. «Алгебра»: Учеб. Для 7 кл. общеобразовательных учреждений / Под редакцией С.А. Теляковского - М: Просвещение, 2002.

14. Алимов Ш.А., Ю.М. Колягин, Ю.В. Сидоров и др. «Алгебра: Учеб. Для 7 кл.» / М: Просвещение, 1999.

15. Макарычев Ю.Н. «Алгебра 7 класс» / Просвещение, 2003.

16. «Алгебра»: Учеб. Для 8 кл. общеобразовательных учреждений / Под редакцией С.А. Теляковского - М: Просвещение, 2002.

17. Мордкович А.Г. и др. «Алгебра 8 класс» / Учебник для общеобразовательных учреждений - М: Мнемозина, 2002.

18. Алимов Ш.А., Ю.М. Колягин, Ю.В. Сидоров и др. «Алгебра: Учеб. Для 9 кл.» / М: Просвещение, 1999.

19. Мордкович А.Г. и др. «Алгебра 9 класс» / Учебник для общеобразовательных учреждений - М: Мнемозина, 2002.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?