Расчет генератора синусоидальных сигналов как цель работы. Выбор принципиальной схемы высокочастотного генератора средней мощности. Порядок расчета LC-генератора на транзисторе, выбор транзистора. Анализ схемы (разработка математической модели) на ЭВМ.
При низкой оригинальности работы "Проектирование высокочастотного генератора синусоидальных сигналов", Вы можете повысить уникальность этой работы до 80-100%
Электронный генератор представляет собой устройство, преобразующее электрическую энергию источника постоянного тока в энергию незатухающих электрических колебаний требуемой формы, частоты и мощности. По принципу работы и схемному построению различают генераторы с самовозбуждение (автогенераторы) и генераторы с внешним возбуждением ,которые по существу являются усилителями мощности генерируемых колебаний заданной частоты . Электронные автогенераторы подразделяются на автогенераторы синусоидальных (гармонических) колебаний и автогенераторы колебаний несинусоидальной формы, которые принято называть релаксационными (импульсными) автогенераторами.В данной курсовой работе необходимо разработать генератор гармонических колебаний, который имел бы такие параметры:-выходная мощность Рвых= 0,2 Вт; В результате анализа ТЗ можно сделать вывод, что разрабатываемый генератор относится к высокочастотным генераторам средней мощности.Известно много разновидностей схем транзисторных генераторов типа LC, но любая из них должна содержать: колебательную систему (обычно колебательный контур), в которой возбуждаются требуемые незатухающие колебания; источник электрической энергии, за счет которого в контуре поддерживаются незатухающие колебания; транзистор, с помощью которого регулируется подача энергии от источника в контур; элемент обратной связи, посредством которого осуществляется подача необходимого возбуждающего переменного напряжения из выходной цепи во входную. В результате обмена энергией между конденсатором и катушкой в контуре возникают свободные затухающие колебания, частота которых определяется параметрами контура Вследствие этого в катушке обратной связи L2, включенной в цепь базы транзистора, наводится переменное напряжение той же частоты, с которой происходят колебания в контуре. Переменная составляющая коллекторного тока восполняет потери энергии в контуре, создавая на нем усиленное транзистором переменное напряжение. Что же касается амплитуды колебаний в контуре, то ее рост ограничивается сопротивлением потерь контура, а также затуханием, вносимым в контур за счет протекания тока в базовой обмотке.Основными техническими данными для расчета транзисторного LC-генератора являются: выходная мощность, отдаваемая автогенератором в нагрузку, Рвых и частота генерируемых колебаний fp. При заданном значении Рвых мощность Рк, которую должен отдать транзистор в контур, составляет Постоянную составляющую коллекторного тока мощность, расходуемую источником тока в цепи коллектора Определяем напряжение смещения на базе, обеспечивающее угол отсечки тока эмиттера, UБЭСМ=Ес UБЭMCOS?Э (1.32)Анализ схемы с рассчитанными параметрами произведем, используя программное приложение Electronics Workbench V5.12.В результате выполнения курсовой работы был спроектирован высокочастотный генератор синусоидальных сигналов в соответствии с ТЗ. Поскольку применение генераторов с колебательными контурами (типа RC) для генерирования колебаний высокой частоты не удовлетворяет, для разрабатываемого генератора была взята схема типа LC (в качестве фазирующей цепочки взята трехточечная схема с автотрансформаторной связью, активный элемент - транзистор).Поз.
План
Содержание
Введение
1 Анализ технического задания
2 Выбор принципиальной схемы
3 Электрический расчет схемы
4 Анализ схемы (разработка математической модели) на ЭВМ
Выводы
Список используемой литературы
Приложение
Введение
Электронный генератор представляет собой устройство, преобразующее электрическую энергию источника постоянного тока в энергию незатухающих электрических колебаний требуемой формы, частоты и мощности.
По принципу работы и схемному построению различают генераторы с самовозбуждение (автогенераторы) и генераторы с внешним возбуждением ,которые по существу являются усилителями мощности генерируемых колебаний заданной частоты .
Электронные автогенераторы подразделяются на автогенераторы синусоидальных (гармонических) колебаний и автогенераторы колебаний несинусоидальной формы, которые принято называть релаксационными (импульсными) автогенераторами.
Являясь первоисточником электрических колебаний, генераторы с самовозбуждением широко используются в радиопередающих и радиоприемных (супергетеродинных) устройствах, в измерительной аппаратуре, в ЭВМ, в устройствах телеметрии и т. д.
По диапазону генерируемых частот генераторы делятся на низкочастотные (от 0,01 Гц до 100 КГЦ), высокочастотные (от 100 КГЦ до 100 МГЦ ) и сверхвысокочастотные (от 100 МГЦ и выше ).
Широкое внедрение сложных радиоэлектронных устройств в различные отрасли народного хозяйства ставит перед разработчиками радиоаппаратуры две важнейшие задачи: повышение ее надежности и уменьшение массы и габаритов. Надежность аппаратуры в настоящее время повышается за счет применения соответствующей элементной базы и специальных методов построения систем, а основным направлением миниатюризации избирательных и автоколебательных низкочастотных систем, ввиду отсутствия реальных путей миниатюризации катушек индуктивности, является внедрение активных избирательных RC-цепей (активных RC-фильтров и RC-генераторов).
Широкому распространению транзисторных RC-генераторов синусоидальных колебаний способствует простота изготовления, существующие высокостабильные конденсаторы и сопротивления, стабильные операционные и интегральные усилители, а также технологическая перспективность, если учесть прогресс технологии микромодулей и цепей на основе твердого тела.
Целью данной курсовой работы является проектирование низкочастотного генератора синусоидальных колебаний. Параметры генератора представлены в задании на курсовую работу.
1
Вывод
В результате выполнения курсовой работы был спроектирован высокочастотный генератор синусоидальных сигналов в соответствии с ТЗ.
Поскольку применение генераторов с колебательными контурами (типа RC) для генерирования колебаний высокой частоты не удовлетворяет, для разрабатываемого генератора была взята схема типа LC (в качестве фазирующей цепочки взята трехточечная схема с автотрансформаторной связью, активный элемент - транзистор).
После расчета выбранной схемы был произведен ее анализ (разработана математическая модель) в Electronics Workbench. На осциллографе, включенном на выходе рассчитанного генератора, синусоидальный сигнал с частотой f = 5000750Гц, что соответствует отклонению в ТЗ.
При нагрузке 2 КОМ выходная мощность генератора составляет 0,225 Вт.
Техническая документация (перечень элементов) представлена в приложении.
Список литературы
1. Гершунский Б.С. Справочник по расчету электронных схем. - Киев: Вища школа. Изд-во при Киев. ун-те, 1983. - 240 с.
2. Бондаренко В.Г. LC-генераторы синусоидальных колебаний. М., “Связь”, 1976. - 208 с. с ил.
3. Петухов В.М. Транзисторы и их зарубежные аналоги. Биполярные транзисторы низкочастотные. Справочник. В 4 т. Т.2. Издание второе, исправленное. - М.: ИП РАДИОСОФТ, 1999. - 544 с., ил.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы