Общая характеристика цифровых сетей связи с применением волоконно-оптических кабелей. Возможности их применения. Разработка проекта для строительства волоконно-оптических линий связи на опорах существующей ВЛ 220 кВ. на участке ПС Восточная-ПС Заря.
Последнее показало что основное препятствие при распространении света (его затухание), обусловленное в основном наличием примесей, может быть снижено, а сами световоды приемлемы в качестве среды распространения сигнала. В любой системе связи (например, цифровой) скорость передачи информации связана с занимаемой полосой, составляющей определенный процент значения несущей частоты. Высокая защищенность от внешних электромагнитных полей, объясняемая диэлектрической природой распространения сигнала, физическими условиями этого распространения и использованием очень коротких длин волн. Телекоммуникационная сеть электроэнергетики является важнейшей составной частью ее инфраструктуры, обеспечивающей функционирование комплекса объектов и центров технологического управления Единой энергетической системы (ЕЭС) России; сбор и передачу телемеханической информации, функционирование средств и систем автоматического управления (релейной защиты, противоаварийной автоматики); контроля и диагностики электростанций, электрических и тепловых сетей, контроля и учета в реальном времени производства, передачи и потребления электрической и тепловой энергии. Дальнейшее развитие отраслевой телекоммуникационной сети предусматривается в соответствии с разработанной специалистами Российского акционерного общества «ЕЭС России» «Концепцией развития Единой сети электросвязи и телемеханики электроэнергетики (ЕСЭТЭ) России на период до 2005 года », в которой поставлены задачи развития отраслевой телекоммуникационно - информационной инфраструктуры как технологической основой управления отраслью [1].На проектируемом участке ПС Восточная - ПС Заря, построена и находится в эксплуатации воздушная высоковольтная линия электропередачи с заземленной нейтралью и действующим напряжением 220КВ. ВЛ проходит в Новосибирской области, по землям совхозов «Луговского» и «Железнодорожного» Новосибирского сельского района. В районе ПС Заря трасса проходит по Шмаковской лесной даче, Тогучинского лесхоза. По пути следования ВЛ имеет 2 пересечения с электрофицированными магистральными железными дорогами (Инская - Тогучин и Инская - Сокур), 1 пересечение с ВЛ 110КВ, 1 пересечение с несудоходной рекой Иня и другие пересечения. Скорость ветра при гололеде - 15м/сек, температура воздуха - минус 5 градусов С0;По назначению аппаратуру аналоговых систем передачи информации, применяемую на ВЛ, можно разделить на две основные группы: комбинированную и многоканальную-для каналов телефонной связи, телемеханики и передачи данных; специальную-для каналов релейной защиты, линейной и противоаварийной автоматики. Комбинированная аппаратура рассчитана на один, два и три телефонных канала и несколько независимых каналов телемеханики (передачи данных) в верхней части полосы стандартного канала тональных частот (ТЧ) . Передача сигналов телефонного разговора осуществляется в нижней так называемой тональной части спектра, составляющей обычно 0,3-2,3 КГЦ., а в надтональном спектре частот (2,3-3,4КГЦ.) образуются каналы телемеханики, передачи данных и вызова абонентов телефонного канала (если в аппаратуре выделен специальный сигнал для этого). Для разделения спектра ТЧ на две полосы (для передачи сигналов телемеханики и данных в надтональном спектре) используются стандартные разделительные фильтры ДК-2,3 , если аппаратура не содержит подобных фильтров (например, В-12-3).Кроме того, если позволяет конструкция аппаратуры, то в том же канале из схемы блока усилителя низкой частоты передатчика исключается ограничитель максимальных амплитуд. Существует следующая аппаратура систем передачи информации по ВЛ [3]: комбинированная типа АСК на один и три канала ТЧ; преобразователи спектра частот стандартной двенадцатиканальной аппаратуры воздушных проводных линий связи (В-12-3, З-12Ф-Е) в спектр высоких частот типа МПУ-12; усилители мощности на 100 Вт. типа УМ-1/12-100 для комбинированной и многоканальной аппаратуры; модемы каналов телемеханики типов АПТ и ТАТ-65.Для организации диспетчерско-технологической связи между ПС Заря (Новосибирскэнерго) и Восточными электрическими сетями проектом предусматривается применение 120-канальной цифровой системы передачи. OLT серии FD2250, используемый в данной системе, преобразует входной кодированный сигнал со скоростью передачи 8448 кбит/с в оптический кодированный сигнал со скоростью передачи 8448 кбит/с. В качестве аппаратуры аналого-цифрового каналообразования применяется мультиплексор серии ENE 6012,который обеспечивает: прием тридцати каналов ТЧ или основных цифровых каналов (ОЦК) и соответствующего числа каналов передачи сигналов управления и взаимодействия между АТС; Он предназначен для объединения-разделения четырех плезиохронных первичных потоков со скоростью передачи 2048 КБИТ/с. в групповой вторичный поток со скоростью передачи 8448 КБИТ/с. Основные технические данные оптического терминала FD-2250 приведены в таблице 2.1 [4].При выборе конструкции таких кабелей следует учитывать то обстоятельство, что кабель должен выполнять две функции: с одной с
План
Содержание
Введение
1. Характеристика трассы ВЛ на участке ПС Восточная - ПС Заря
2. Выбор систем передачи
2.1 Существующие системы передачи по ВЛ
2.2 Характеристика проектируемой СП
3. Выбор типа ОК для подвески на ВЛ
3.1 Общие сведения
3.2 ОК, встроенные в грозозащитный трос
3.3 Самонесущие неметаллические ОК
3.4 ОК, предназначенные для навивки на провода и грозозащитные тросы
3.5 Обоснование выбора типа ОК
4. Расчет параметров ОК
4.1 Расчет числовой апертуры и определения режима работы ОК
4.2 Расчет затухания ОК
4.3 Расчет дисперсии
4.4 Расчет длины регенерационного участка
4.4.1 Расчет длины ЭКУ по дисперсии
4.4.2 Расчет длины ЭКУ по затуханию
5. Расчет механической нагрузки на ОКГТ
6. Эксплуатационные и монтажные измерения параметров ВОЛС
6.1 Испытания и измерения ОК
6.2 Измерения затухания
6.2.1 Прямой метод измерения затухания
6.3 Измерение дисперсии
6.4 Определение места и характера повреждения ОК
7. Расчет показателей надежности
7.1 Понятие надежности
7.2 Расчет параметров готовности подземной ВОЛС
7.3 Расчет параметров готовности подвесной ВОЛС
7.4 Анализ результатов расчетов
8. Строительство ВОЛС - ВЛ на участке ПС Восточная - ПС Заря
8.1 Общие сведения
8.2 Строительство ВОЛС - ВЛ на монтажном участке (опора №9 - опора №17)
10. Мероприятия по охране труда, ТБ и сохранению окружающей среды
Заключение
Список литературы
Аннотация
Введение
Волоконнооптические линии связи (ВОЛС) в настоящее время занимают заметное место в системах передачи информации как общегражданского, так и специализированного назначения.
Внедрение волоконнооптических линий в системы связи началось с конца 70-х годов и интенсивно продолжается нарастающими темпами. Исходной точкой развития ВОЛС считается открытие лазерного механизма генерации света, а затем - появление современной волоконной оптики на базе полученных кварцевых световодов с малым затуханием. Последнее показало что основное препятствие при распространении света (его затухание), обусловленное в основном наличием примесей, может быть снижено, а сами световоды приемлемы в качестве среды распространения сигнала.
Оптические волокна (ОВ) в качестве среды распространения многоканального сигнала имеют существенные преимущества перед традиционно используемыми металлическими кабелями и эфиром.
Широкополосность. В любой системе связи (например, цифровой) скорость передачи информации связана с занимаемой полосой, составляющей определенный процент значения несущей частоты. Неискаженные передачу и прием полосы осуществить тем легче, чем меньший процент она составляет. Следовательно, большое значение несущей частоты, что и используется в ВОЛС,снижает требования к широкополосности системы и увеличивает ее информационную емкость.
Высокая защищенность от внешних электромагнитных полей, объясняемая диэлектрической природой распространения сигнала, физическими условиями этого распространения и использованием очень коротких длин волн. Подобного эффекта невозможно достичь в уже освоенных традиционных диапазонах изза насыщенности радиочастотного спектра источниками излучений. Это свойство особенно привлекательно для энергетики, так как металлический кабель плохо совместим с воздушными высоковольтными линиями электропередачи (ВЛ).
Большая длина участка регенерации. По понятным причинам это имеет большое значение, в частности, для электроэнергетической отрасли.
Малогабаритность и легкость кабелей на основе ОВ.
Высокая экономичность изза отсутствия потребности в меди, что очень существенно, поскольку традиционно кабельная промышленность потребляет до половины объема общих ресурсов меди и до четверти - свинца.
Присущие ВОЛС недостатки (дороговизна аппаратуры и кабеля изза сложной технологии, необходимость работы при повышенном соотношении сигнал - шум изза трудностей практической реализации когерентной обработки сигнала и гетеродинных методов приема, слабая радиационная стойкость и другие) не снижают указанных преимуществ. Это, а также тот факт, что многие задачи передачи сигналов могут быть экономично решены только с использованием ОВ, обусловило широкое распространение ВОЛС не только в дальней связи, но и в локальных сетях.
Энергетическая отрасль также является перспективной областью применения ВОЛС, учитывая протяженность ВЛ и возможность подвески оптического кабеля (ОК) на высоковольтных опорах. Телекоммуникационная сеть электроэнергетики является важнейшей составной частью ее инфраструктуры, обеспечивающей функционирование комплекса объектов и центров технологического управления Единой энергетической системы (ЕЭС) России; сбор и передачу телемеханической информации, функционирование средств и систем автоматического управления (релейной защиты, противоаварийной автоматики); контроля и диагностики электростанций, электрических и тепловых сетей, контроля и учета в реальном времени производства, передачи и потребления электрической и тепловой энергии.
Одновременно с этим телекоммуникационная сеть электроэнергетики обеспечивает работу административно-хозяйственных и организационно-экономических управлений производственными объектами, коммерческую, а также научную и конструкторскую деятельность, связанную с развитием отрасли. Телекоммуникационная сеть электроэнергетики - крупнейшая отраслевая сеть связи страны. При развитии Взаимоувязанной сети связи (ВСС) России рассматриваются вопросы по интеграции отечественных телекоммуникационных сетей в Глобальную информационную структуру (ГИС). Одновременно с глобализацией связи будет происходить постепенный переход к ее персонализации, которая означает возможность любого абонента получать различные услуги связи по своему персональному номеру в любой точке земного шара. Телекоммуникационная сеть электроэнергетики развивается как часть ВСС на аналогичных принципах с использованием передовых телекоммуникационных технологий.
Дальнейшее развитие отраслевой телекоммуникационной сети предусматривается в соответствии с разработанной специалистами Российского акционерного общества «ЕЭС России» «Концепцией развития Единой сети электросвязи и телемеханики электроэнергетики (ЕСЭТЭ) России на период до 2005 года », в которой поставлены задачи развития отраслевой телекоммуникационно - информационной инфраструктуры как технологической основой управления отраслью [1]. При этом в полной мере учитывается существующая в России законодательная и нормативно-правовая база.
В основу создания и развития ЕСЭТЭ положен поэтапный переход от существующих раздельных сетей по видам информации к единой широкополосной цифровой сети интегрального обслуживания и интеллектуальной сети. Что позволит реализовать новые виды услуг при значительном сокращении оборудования, повышении эффективности использования канального и частотного ресурсов и в конечном итоге при значительном снижении затрат в расчете на единицу передаваемой информации.
Из новейших информационных технологий, которые начали в последнее время внедряться в электроэнергетике и получают широкое распространение в дальнейшем, следует отметить [1]: - синхронную цифровую иерархию (СЦИ) - Synchronous Digital Hierarchy - SDH;
- широкополосную цифровую сеть связи с интегрированным обслуживанием (Ш-ЦСИО) - Broadbard Integrated Services Digital Network (B-ISDN);
- асинхронный режим доставки информации (АРА) - Asynchronous Transfer Mode - ATM;
- интеллектуальные сети (СИ) - Intelligent Network - IN.
Цифровизация первичной сети осуществляется в три этапа [1]: - на первом этапе (до 2000 года) будут созданы интегрально-цифровые сети связи (ИЦСС) - Integrated Digital Network - IND, в которых будет обеспечиваться интеграция цифровых систем передачи и коммутации. Одним из главных решений этого этапа является переход сетей связи отрасли на единую систему сигнализации. При этом с целью повышения эффективности цифровизации необходимо в каждой из зон обеспечивать компклексное внедрение цифровых систем передачи и коммутации;
- на втором этапе (до 2005 года) должны быть созданы цифровые сети интегрального обслуживания (ЦСИО) - Integrated Services Digital Network (ISDN), в которых потребители используют каналы 2В D (B - цифровой 64-кбит/с канал, D - служебный цифровой 16- Кбит/с канал). Эти сети - результат взаимного развития сетей связи и вычислительных сетей, обеспечивающих предоставление пользователям более широкого спектра услуг;
- на третьем этапе (после 2005 года) предусматривается переход к Ш-ЦСИО для организации отраслевой транспортной сети и интеллектуальных сетей.
Внедрение указанных выше новейших информационных технологий осуществляется в рамках интенсивного развития в отрасли: волоконнооптических линий связи с подвеской волоконнооптических кабелей (ВОК) на опорах ВЛ 110-500 КВ;
- цифровой коммутационной техники;
- систем спутниковой связи.
Внедрение ВОЛС с подвеской ВОК на опорах ВЛ в нашей стране было начато в конце 80-х годов, и на 1 июля 1998 г. введены в эксплуатацию ВОЛС общей протяженностью около 4000 км в ряде энергосистем (Ленэнерго, Колэнерго, Иркутскэнерго, Ивэнерго, Кузбассэнерго и других) [1]. Дальнейшее развитие сетей ВОЛС определено “Концепцией развития Единой сети электросвязи и телемеханики электроэнергетики России на период до 2005 года “, в соответствии с которой в ближайшие 7-8 лет будет построено около 15,0 тыс.км. ВОЛС с подвеской на ВЛ. Магистральные ВОЛС будут сооружаться, как правило, в кооперации с АО “Ростелеком” и с некоторыми другими, в первую очередь отечественными телекоммуникацинными компаниями. В регионах, главным образом, будут сооружаться корпоративные сети. При этом основное внимание будет уделяться развитию региональных первичных цифровых сетей.
Учитывая накопленный опыт, а также возрастающую заинтересованность операторов связи и различных компаний и ведомств в строительстве ВОЛС на ВЛ (ВОЛС-ВЛ) РАО “ЕЭС России” по поручению Государственной комиссии по электросвязи при Государственном комитете России по связи и информатизации разработало нормативно-техническую документацию федерального уровня “Правила проектирования, строительства и эксплуатации волоконнооптических линий связи на ВЛ 110 КВ и выше” [2].
В общих положениях Правил обосновываются достоинства сооружения ВОЛС-ВЛ по сравнению с традиционным способом прокладки в грунте. Это: отсутствие необходимости в отводе земель и проведение согласований только с владельцами сооружений, пересекаемых ВЛ;
уменьшение сроков строительства;
уменьшение количества повреждений в районах городской застройки и в промышленных зонах;
снижение капитальных и эксплуатационных затрат в районах с тяжелыми грунтами.
В данном дипломном проекте рассмотрены основные вопросы проектирования и строительства ВОЛС-ВЛ на опорах существующей ВЛ 220 КВ. на участке ПС Восточная-ПС Заря.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы