Проектирование цифрового корректирующего фильтра - Курсовая работа

бесплатно 0
4.5 93
Разработка и обоснование структурной схемы цифрового корректирующего фильтра. Обоснование общего алгоритма его функционирования. Оценка быстродействияустройства. Отладка разработанной программы. Составление принципиальной схемы устройства и ее описание.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
В радиотехнике, наряду с методами аналоговой обработки сигналов, широкое распространение получили методы и устройства цифровой обработки сигналов, реализованные на основе микропроцессоров (МП). Микропроцессоры находят применение при решении широкого круга радиотехнических задач, таких как построение радиотехнических измерителей координат, сглаживающих и экстраполирующих фильтров устройств вторичной обработки сигналов, специализированных вычислительных устройств бортовых навигационных комплексов, устройств кодирования и декодирования сигналов, весовой обработки пачечных сигналов в радиолокации, различного рода измерительных устройств и т.п. При аппаратном получают цифровые устройства с традиционной «жесткой"" логикой, что обеспечивает наибольшее быстродействие устройств, но требует трудоемкой разработки индивидуальной структуры цифрового устройства - спецпроцессора. К ним относятся цифровые устройства, реализованные как автоматы с микропрограммным управлением и хранимой в ПЗУ программой, а также цифровые устройства, построенные на основе микропроцессора. Если же от устройства требуется гибкость, т.е. способность изменения функций программным путем в процессе работы или расширения круга решаемых задач, тогда становится целесообразным использование микропроцессоров (МП), Применение оправдано при построении устройств большой сложности, если быстродействие МП оказывается достаточным.Вспомогательные схемы целесообразно выполнять с наименьшими аппаратными затратами, т.е. следует стремиться к сокращению количества микросхем. По заданию следует использовать микросхему 10-разрядного быстродействующего функционально законченного АЦП последовательного приближения К1108ПВ1, предназначенную для преобразования аналогового сигнала в двоичный параллельный цифровой код. В состав функциональной схемы преобразователя входят ИОН, ГТИ, выходной регистр с тремя логическими состояниями и функцией хранения информации в течение одного цикла преобразования ВРГ РПП, ЦАП, многовходовый КН с входным резисторным вычитающим устройством, дешифратором уровней тока и др. Микросхема рассчитана на преобразование однополярного входного напряжения в диапазоне от О до З В, подаваемого на вход через внешний ОУ или УВХ при максимальной частоте преобразования 1,1 МГЦ для 10-разрядного ре жима и 1,33 МГЦ для 8-разрядного режима. Однако для корректной подачи сигнала прерывания, свидетельствующего об обновлении данных на выходе АЦП, на вход МП и сброса этого сигнала нам потребуется обычный D-триггер, на тактовый вход которого подается сигнал готовности данных с выхода АЦП.По описанному в п.4 алгоритму разработаем программу на языке микропроцессора. Кроме этого, в целях повышения быстродействия, вычисление заданного линейно разностного уравнения должно выполняться с максимальной скоростью, т.е. за наименьшее число машинных тактов. Текст разработанной программы: Курсовая работа на тему: Цифровой корректирующий фильтр выполнил: ст.гр. Программа фильтрации сигнала. исходные данные линейное разностное уравнение Y(n-2)=[X(n) - X(n-1) 4X(n-2) - X(n-3) X(n-4)]/4 = [X(n) [-X(n-1)] [-X(n-4)]]/4 X(n-2) частота дискретизации Fд = 6 (КГЦ) входной сигнал - аналоговый, диапазон изменения (-4.5.. 4.5)В аналого-цифровой преобразователь - К1108ПВ1 выходной сигнал - 8-разрядный параллельный обратный код микропроцессор - КР580ВМ80А Программа на языке ассемблера. ;Подпрограмма суммирования 2-х чисел, находящихся по адресу X и Y.Быстродействие устройства определяется временем, затрачиваемым микропроцессором на выполнение команд. Время выполнения определяется тактовой частотой микропроцессора и количеством тактов затрачиваемых на выполнение команды. После прихода команды прерывания RST 7 на МП, выходной отсчет появляется максимум через 840 тактов процессора. Время выполнения считается с момента прихода импульса дискретизации до выдачи результата y(n).По окончании отладки были исправлены логические ошибки и получена работоспособная программа. Проверка дала следующие результаты: Для упрощения процесса проверки в память введем значения отсчетов X(n-1), X(n-2), X(n-3) и X(n-4). Для проверки работоспособности программы, как с положительными, так и с отрицательными числами, значения отсчетов зададим разных знаков.При разработки принципиальной схемы следует учесть предъявленные к ней требования, а также для уменьшения стоимости устройства и повышения его быстродействия необходимо стремиться к уменьшению числа используемых микросхем. В качестве операционного усилителя, который масштабирует и сдвигает входной аналоговый сигнал, возьмем ОУ общего применения марки К140УД14А. Триггер, обеспечивающий подачу сигнала готовности данных М.П., должен иметь инверсные входы R (вход установки в 0 состояние) и С (тактовый вход). В данной курсовой работе была построена схема цифрового устройства и разработана программа, обеспечивающая работу данного устройства как цифрового корректирующего фильтра. Аналоговые фильтры физически реализуемы, если в их передаточных функциях степень

План
Содержание

1. Ведение

2. Анализ задачи и ее формализация

3. Разработка и обоснование структурной схемы устройства

4. Разработка и обоснование общего алгоритма функционирования устройства и его описание

5. Разработка программы

6. Оценка быстродействия устройства

7. Отладка разработанной программы. Результаты отладки

8. Составление принципиальной схемы устройства и ее описание

9. Заключение

10. Список использованных источников

11. Приложение

Описание структурной схемы микросхемы КА1603РЕ1

Описание структурной схемы микросхемы КР537РУ17

Триггер К555ТМ2

Регистр К1533ИР23

Микросхема К1108ПВ1

Введение
В радиотехнике, наряду с методами аналоговой обработки сигналов, широкое распространение получили методы и устройства цифровой обработки сигналов, реализованные на основе микропроцессоров (МП). Применение МП в радиотехнических системах (РТС) существенно улучшает их технико-экономические показатели (потребление энергии, габариты, стоимость и т.д.), открывает широкие возможности реализации сложных алгоритмов цифровой обработки сигналов (ЦОС).

Применение МП целесообразно в тех случаях, когда реализация определенных функций РТС с использованием «жесткой логики» требует большого количества микросхем .

Микропроцессоры находят применение при решении широкого круга радиотехнических задач, таких как построение радиотехнических измерителей координат, сглаживающих и экстраполирующих фильтров устройств вторичной обработки сигналов, специализированных вычислительных устройств бортовых навигационных комплексов, устройств кодирования и декодирования сигналов, весовой обработки пачечных сигналов в радиолокации, различного рода измерительных устройств и т.п.

При создании радиоэлектронной аппаратуры используются три основных подхода реализации цифровых устройств: аппаратный, программный и аппаратно- программный. При аппаратном получают цифровые устройства с традиционной «жесткой"" логикой, что обеспечивает наибольшее быстродействие устройств, но требует трудоемкой разработки индивидуальной структуры цифрового устройства - спецпроцессора.

При программном подходе цифровое устройство реализуется в виде программы для готовой универсальной ЭВМ, в качестве которой можно использовать МИКРОЭВМ, предназначенную для встраивания непосредственно в разрабатываемые блоки. Аппаратно-программный подход предполагает разработку как программных, так и аппаратных средств. К ним относятся цифровые устройства, реализованные как автоматы с микропрограммным управлением и хранимой в ПЗУ программой, а также цифровые устройства, построенные на основе микропроцессора. Аппаратно-программный подход при использовании современных интегральных схем позволяет в наибольшей степени учесть особенности решаемых задач.

Выбор варианта построения цифрового устройства в каждом конкретном случае осуществляется с учетом всех требований технического задания. Применение «жесткой” логики оправдано в двух основных случаях I) при необходимости получения предельно бысокого быстродействия; 2) при построении относительно несложных устройств на интегральных схемах малой и средней степени интеграции.

Если же от устройства требуется гибкость, т.е. способность изменения функций программным путем в процессе работы или расширения круга решаемых задач, тогда становится целесообразным использование микропроцессоров (МП), Применение оправдано при построении устройств большой сложности, если быстродействие МП оказывается достаточным. Ограничения, связанные с недостаточным быстродействием МП, можно преодолеть построением многопроцессорных устройств или выполнением части функций с помощью специально разработанных аппаратных средств, работающих совместно с МП.

Наибольшая экономичность цифрового устройства по объему оборудования и другим эксплуатационным параметрам, а также наименьшая трудоемкость проектирования достигаются при использовании однокристальных МП.

2. Анализ задачи и ее формализация.

Согласно техническому заданию разностное уравнение имеет вид:

Для упрощения программы и сокращения числа выполняемых машинных циклов, т.е. для повышения быстродействия, упростим данное выражение и представим его в следующем виде:

Согласно данному уравнению изобразим структурную схему проектируемого устройства: где Тз- время задержки, равное интервалу дискретизации.

По заданию проектируемое устройство, т.е. корректирующий фильтр, должно быть реализовано на базе комплекта БИС серии КП580.

Помимо МП ВМ80А, для построения законченного модуля ЦП необходимы: - генератор тактовых импульсов КР580ГФ24, который вырабатывает тактовые импульсы, импульс сброса и обеспечивает синхронизацию всего устройства в целом.

- системный контроллер и формирователь шины КР580ВК28/38, который обеспечивает работу с памятью и портами, а так же аппаратно формирует команду векторного прерывания RST7.

- буферные регистры КП580ИП82/ИП83

Преобразование входного аналогового сигнала в цифровой код осуществляется с использованием АЦП К1108ПВ1. Поскольку диапазон входного сигнала оказывается не согласованным с рабочим диапазоном используемого АЦП, на входе устройства придется поставить масштабирующий усилитель.

Данные из АЦП выходят в виде 8 разрядного прямого кода. В ЦП они обрабатываются в форме 16 разрядного дополнительного кода, поэтому переполнения не происходит.

Перевод прямого кода в дополнительный реализуем программно.

Из формул видно что, для формирования выходного отчета необходимо использовать текущее значение входного отчета и его предыдущие значения. Для хранения входных, выходных, предыдущих значений отсчетов и промежуточных результатов вычисления необходимо выделить область памяти в ОЗУ, поскольку реализовать в полном объеме функции проектируемого устройства с использованием программно доступных регистров МП не возможно.

Обработка отсчетов производится программой, хранящейся в ПЗУ. К моменту прихода следующего отсчета устройство должно закончить обработку предыдущего и находиться в состоянии готовности. Для реализации данного условия необходимо чтобы частота дискретизации была меньше времени обработки одного отсчета.

Для передачи данных внешнему устройству потребуется порт вывода, в качестве которого может служить регистр с параллельной загрузкой. Согласование рабочего кода МП, т.е. параллельного дополнительного кода, с требуемым выходным кодом представления данных реализуем программно.

Процедура вывода данных выполняется независимо от состояния внешнего устройства. Такой вид обмена называется прямым или безусловным. Процедура вывода инициируется и выполняется непосредственно программой, реализуемой ЦП. Программно- управляемый обмен не является единственным типом обмена. Но судя по аппаратным затратам, это наиболее эффективный тип обмена.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?