Проектирование суммирующего двоично-десятичного счетчика импульсов - Курсовая работа

бесплатно 0
4.5 127
Интегральная микроэлектроника как элементная база дискретной техники. Применение биполярных и полевых транзисторов в качестве активных элементов цифровых микросхем. Выбор и обоснование структурной схемы суммирующего двоично-десятичного счетчика импульсов.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Огромные успехи, достигнутые интегральной полупроводниковой микроэлектронной технологией, позволили создать приборы, по всем параметрам превосходящие изделия сходного назначения, собранные на отдельных компонентах. Переход к интегральным микросхемам существенно изменил способы построения электронной аппаратуры, поскольку изделия микросхемотехники представляют собой законченные функциональные узлы, будь то логические элементы для выполнения простейших операций или процессоры вычислительных машин, состоящие из многих тысяч элементов. Современный этап развития микроэлектронной техники характеризуется широким применением микросхем средней и большой степени интеграции. Преимущество цифровых систем на интегральных схемах СИС сравнительно с устройствами, реализованными на приборах МИС, не только в меньшем числе корпусов. Функциональные устройства СИС расходуют меньше энергии, поскольку мощность, потребляемая внутренним элементом для переключения конкретной нагрузки, наперед известна, тогда как изделия МИС рассчитываются на максимальную возможную нагрузку, которая в большинстве случаев используется не полностью.Счетчики предназначены для подсчета числа входных импульсов. Один триггер образует один разряд счетчика. n - триггеров образуют n - разрядный счетчик. Так как каждый триггер имеет два устойчивых состояния, то n - триггеров имеют 2n состояний.Нужно спроектировать суммирующий двоично-десятичный счетчик импульсов. Для данного счетчика подойдет схема параллельного суммирующего счетчика, т.к этот вариант отличается хорошим быстродействием.Задание: Счетчик задан следующими параметрами: код 2421 двоичные наборы 0, 1, 2, 3, 4, 11, 12, 13, 14, 15. старший разряд реализовать на JK-триггерах младший на DV-триггерах M = 4 значит для реализации каждого разряда двоично-десятичного счетчика необходимо 4 триггера. Таблица функционирования отображает состояния счетчика до переключающего сигнала и после в зависимости от заданного кода (2-4-2-1), а также функции перехода, показывающие, как изменится состояние (таблица 2). При использовании четырех разрядов можно закодировать 16 возможных комбинаций цифр двоичной системы счисления, для кодировки 10 цифр достаточно 10 комбинаций. Чтобы исключить некоторые комбинации (в зависимости от кода) используют разные виды кодировки.Эти карты показывают, какое значение принимает функция перехода для данного триггера при определенной комбинации значений на выходах триггеров. Карты функций перехода потребуются в дальнейшем для составления функций управления входами триггеров. В левом верхнем углу каждой карты указано, для какого триггера составлялась карта. Карты Карно составляются в соответствие со словарем перехода триггера.В картах Карно выделены клетки, которые описываются наиболее простыми логическими уравнениями, и охватывающие все единичные состояния триггеров.Для разработки электрической принципиальной схемы нам понадобятся простые логические микросхемы серии 74HC. В таблице 6 представлены выбранные микросхемы 74HC11 Содержит три элемента 3И 74HC08 Содержит четыре элемента 2И 74HC32 Содержит четыре элемента 2ИЛИ а) б) а-74HC74A, б-74HC08В качестве исходного материала используют одно - или двухсторонние фольгированные диэлектрики (в основном фольгированные медью). Рисунок печатного проводника наносится на фольгированную основу в виде защитной резистивной пленки, а непокрытые резистом места удаляются с помощью травления. "прибавлять") - при этом методе исходным является нефольгированный диэлектрик, на поверхность которого наносится желаемый рисунок печатной платы. Преимущества аддитивного метода по сравнению с субтрактивным: более высокая надежность, так как проводники и металлизация отверстий получаются в едином гальваническом цикле; При химическом методе слои получают на основе восстановительного соединения, при этом слои получаются до 10 мкм при удовлетворительных механических и физических свойствах покрытия.Собственно, весь процесс изготовления печатной платы можно условно разделить на пять основных этапов: предварительная подготовка заготовки (очистка поверхности, обезжиривание); Однако эти способы не получили широкого распространения ни в радиолюбительской среде, ни в промышленности (хотя изготовление плат фрезерованием иногда применяется в тех случаях, когда необходимо очень быстро изготовить несложные печатные платы в единичных количествах). Предварительная подготовка заготовки: данный этап является начальным и заключается в подготовке поверхности будущей печатной платы к нанесению на нее защитного покрытия. Нанесение защитного покрытия: нанесение защитного покрытия является самым важным этапом в процессе изготовления печатных плат, и именно им на 90% определяется качество изготовленной платы. К недостаткам данного раствора следует отнести образование в процессе реакции отходов, которые оседают на плате и препятствуют нормальному протеканию процесса травления, а также сравнительно низкую скорость реакции. персульфат аммония - светлое кристаллическое вещество, растворя

План
Содержание

Введение

1. Проектировочный раздел

1.1 Назначение устройства

1.2 Выбор и обоснование структурной схемы устройства

1.3 Логический расчет

1.4 Составление карт функций перехода FQ

1.5 Составление минимизированных логических уравнений

1.6 Разработка принципиальной схемы устройства

2. Конструкторско-технологический раздел

2.1 Выбор и обоснование способа изготовления печатных плат

2.1.1 Методы изготовления печатных плат

2.1.2 Выбор и обоснование способа изготовления печатной платы

2.1.3 Очистка заготовки, сверловка, нанесение флюса, лужение

2.2 Выбор и обоснование способа монтажа элементов

3. Охрана труда

3.1 Меры безопасности при изготовлении печатных плат

3.1.1 Основы безопасности производства печатных плат

Заключение

Литература

Введение
Основной элементной базой современной дискретной техники является интегральная микроэлектроника. Огромные успехи, достигнутые интегральной полупроводниковой микроэлектронной технологией, позволили создать приборы, по всем параметрам превосходящие изделия сходного назначения, собранные на отдельных компонентах. Переход к интегральным микросхемам существенно изменил способы построения электронной аппаратуры, поскольку изделия микросхемотехники представляют собой законченные функциональные узлы, будь то логические элементы для выполнения простейших операций или процессоры вычислительных машин, состоящие из многих тысяч элементов.

Современный этап развития микроэлектронной техники характеризуется широким применением микросхем средней и большой степени интеграции. Преимущество цифровых систем на интегральных схемах СИС сравнительно с устройствами, реализованными на приборах МИС, не только в меньшем числе корпусов. С помощью СИС достигается более высокое быстродействие, поскольку задержка импульсов в объеме кристалла меньше задержек во внешних соединениях. Кроме того, элементы, образующие СИС, для уменьшения времени переключения используются, где это допустимо, в ненасыщенном режиме. Функциональные устройства СИС расходуют меньше энергии, поскольку мощность, потребляемая внутренним элементом для переключения конкретной нагрузки, наперед известна, тогда как изделия МИС рассчитываются на максимальную возможную нагрузку, которая в большинстве случаев используется не полностью. Помехоустойчивость СИС также выше, если учесть, что соединения внутри кристалла менее подвержены действию наводок, чем соединения между отдельными интегральными схемами и платами.

В качестве активных элементов цифровых микросхем сейчас применяются два типа транзисторов: биполярные и полевые (униполярные). Последние имеют структуру металл - окисел - полупроводник (МОП) или, как ее еще называют, металл-диэлектрик-полупроводник (МДП). Цифровые микросхемы на биполярных и полевых транзисторах существенно различаются по многим показателям, и развитие их идет самостоятельными путями.

Микросхемы на основе полевых транзисторов также широко используются в настоящее время. Наиболее распространены и перспективны схемы, основанные на совместном включении пары транзисторов с каналами разных видов проводимости, так называемые комплементарные структуры (КМОП-структуры).

Для удобства разработчиков аппаратуры и по технологическим признакам цифровые интегральные схемы выпускают сериями. Серией называют совокупность микросхем различного функционального назначения, которые имеют согласованные электрические и временные параметры для совместного использования. Микросхемы одной серии изготавливают по единой технологии, и они имеют сходное конструктивное исполнение. В состав современных развитых серий входят десятки типов микросхем - от логических элементов до функционально законченных узлов: счетчиков, регистров, сумматоров, запоминающих устройств, арифметико-логических узлов, микропроцессоров и других.

Но не смотря на это возникает задача проектирования узкоспециализированных устройств.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?