Компоновка конструктивного решения здания. Определение сейсмичности строительной площадки и сбор нагрузок. Расчет каркаса в продольном направлении. Определение сейсмических нагрузок с учетом кручения здания в плане. Расположение антисейсмических швов.
При низкой оригинальности работы "Проектирование одноэтажного каркасного здания из лёгких конструкций ст. Северская", Вы можете повысить уникальность этой работы до 80-100%
В связи с увеличением частоты природных катаклизмов, а именно землетрясений возникла проблема сейсмоустойчивости зданий и сооружений, построенных без учета сейсмических воздействий, что в случае данных природных катастроф наносит материальный ущерб. При разработке проектов зданий и сооружений выбор конструктивных решений производят исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, достигаемых за счет внедрения эффективных строительных материалов и конструкций, снижения массы конструкций и т.п.Здание имеет полный металлокаркас; Здание проектируется каркасное. Покрытие - стальной проф лист, утеплитель, трехслойные панели покрытия; Ограждающие трехслойные панели покрытия опираются на стальные прогоны с шагом 3м; По периметру здания цокольная стеновая панель из керамзитобетона толщиной 300мм и высотой 1,2м,опирающаяся на фундаментную балку;Согласно СНИП II-7-81 (Строительство в сейсмических районах) в разделе Общее сейсмическое районирование территории Российской Федерации ОСР-97” (Список населенных пунктов) по карте ОСР-97-В-5% сейсмичность района ст. составляет 8 баллов (Карта В - объекты повышенной ответственности и особо ответственные объекты. Решение о выборе карты при проектировании конкретного объекта принимается заказчиком по представлению генерального проектировщика, за исключением случаев, оговоренных в других нормативных документах).Сбор нагрузок производим на 1 м2 покрытия здания. Сбор нагрузок производим в табличной форме и представлен в таблице 2.1.Для определения периода собственных колебаний и форм колебаний необходимо вычислить динамические характеристики одноэтажной рамы поперечника здания. Жесткость одной колонны: Жесткость сечения самонесущей стены (или ее элемента) определяется без учета трещин и принимается равной 0,8E0Ic, Перемещение колонн: Жесткость каркаса здания: Жесткость рамы здания: Рис.3-Продольный разрез здания со стальным каркасом и его расчетная схема Определяем расчетные величины сейсмических нагрузок, действующих на поперечные рамы каркаса: - значение сейсмической нагрузки для i-го тона собственных колебаний здания или сооружения, определяемое в предположении упругого деформирования конструкций по формуле: а) в уровне верха колонн рамы, с учетом коэффициента 1,2 : тогда расчетная сейсмическая нагрузка равна: При сейсмичности площадки 8 баллов и более при грунтах III категории к значению Sik вводится множитель 0,7, учитывающий нелинейное деформирование грунтов при сейсмических воздействиях.( СНИП II-7)Определим жесткость связевых панелей на уровне верха колонн без учета продольных деформаций колонн и распорок (в запас прочности): Для определения периода собственных колебаний и форм колебаний необходимо вычислить динамические характеристики одноэтажной рамы поперечника здания. Принимаем колонны сечением: Двутавр: ; Определяем перемещение колонн от действия единичных горизонтальных сил, приложенных в уровне верха колонн. Жесткость одной колонны: Жесткость сечения самонесущей стены (или ее элемента) определяется без учета трещин и принимается равной 0,8E0Ic: Перемещение отдельной колонны: Жесткость каркаса здания на уровне верха колонн C определяется по формуле п - число колонн (или рам) в каркасе здания (отсека);Значение расчетного эксцентриситета между центрами жесткостей и веса здания принимаем равным 0,1В, где В-размер здания в плане в направлении, перпендикулярном действию силы При расчете здания в поперечном направлении В=60м; =0,1•60=6 м; Вычислим угловую жесткость здания: Определим полную сейсмическую нагрузку на раму каркаса с учетом поворота здания в плане: рама по оси 1 рама по оси 2 рама по оси 3 рама по оси 4 рама по оси 5 рама по оси 6 рама по оси 7 рама по оси 8 рама по оси 9 рама по оси 10В целях обеспечения пространственной жесткости каркаса, устойчивости покрытия в целом и его элементов в отдельности необходимо предусматривать систему связей между несущими стальными конструкциями покрытий (ферм) в плоскости их верхних и нижних поясов и в вертикальных плоскостях. Вертикальные антисейсмические швы в местах пересечения стен осуществляют путем изготовления специальных Г-образных трехслойных панелей, в которых в месте антисейсмического шва из металлических облицовочных листов выполняются компенсатор, а жесткий утеплитель заменяется на эластичный. В целях обеспечения пространственной жесткости каркаса, а также устойчивости покрытия в целом и его элементов в отдельности необходимо предусматривать систему связей между несущими стальными конструкциями покрытия (фермами) в плоскости их верхних и нижних поясов и в вертикальных плоскостях.
План
Содержание
Введение
1. Компоновка конструктивного решения здания
2. Определение сейсмичности строительной площадки и сбор нагрузок
2.1 Сбор нагрузок
2.2 Расчет каркаса в поперечном направлении
3. Расчет каркаса в продольном направлении
4. Определение сейсмических нагрузок с учетом кручения здания в плане
5. Антисейсмические мероприятия
Литература
Введение
В связи с увеличением частоты природных катаклизмов, а именно землетрясений возникла проблема сейсмоустойчивости зданий и сооружений, построенных без учета сейсмических воздействий, что в случае данных природных катастроф наносит материальный ущерб. Принимая во внимание все это в районах подверженных сейсмическим воздействиям силой 7 и более баллов, возникла необходимость возведения зданий и сооружений, способных выдерживать сейсмические воздействия.
При разработке проектов зданий и сооружений выбор конструктивных решений производят исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, достигаемых за счет внедрения эффективных строительных материалов и конструкций, снижения массы конструкций и т.п. Принятые конструктивные схемы должны обеспечивать необходимую прочность, устойчивость; элементы сборных конструкций должны отвечать условиям механизированного изготовления на специальных предприятиях.
При проектировании гражданских зданий необходимо стремиться к наиболее простой форме в плане и избегать перепадов высот. При проектировании часто выбирают объемно-планировочные и конструктивные решения, так как они обеспечивают максимальную унификацию и сокращение числа типоразмеров и марок конструкций.
Список литературы
1. СНКК 22-301-2000. “Строительство в сейсмических районах Краснодарского края”
2. СНКК 20-303-2002. “Нагрузки и воздействия. Ветровая и снеговая нагрузки. Краснодарский край”
3. СНИП 2.01.07-85*. “Нагрузки и воздействия” Госстрой М., 1985.
4. СНКК 23-302-2000. Энергетическая эффективность жилых и общественных зданий. Нормативы по теплозащите зданий. Краснодарский край
5. СНИП 2.02.01-83*. Основания зданий и сооружений. М., 1982.
6. СНИП II-7-81*. Строительство в сейсмических районах. М., 2000.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы