Химические и физические свойства карбамида (мочевины). Расчет коэффициента теплопередачи и поверхности теплопередачи выпарного аппарата, уравнение аддитивности термических сопротивлений. Методика расчета коэффициента теплопередачи с использованием ЭВМ.
Аннотация к работе
Карбамид (мочевина) СО(NH2)2 представляет собой амид карбаминовой кислоты. Карбамид выпускается в виде гранул или кристаллов. Реагируя с формальдегидом при нагревании в присутствии щелочи, карбамид образует различные высокомолекулярные продукты, которые применяются в промышленности для изготовления пластических масс. Карбамид легко растворяется в жидком аммиаке, образуя соединение СО(NH2)2NH3 с массовой долей 71,9 % карбамида и 22,1 % вес аммиака и существующее только в растворах. Карбамид выпускается по ГОСТ 2081-92Е, который соответствует требованиям к карбамиду, изготовляемому для нужд сельского хозяйства и для поставки на экспорт: Таблица 1.2.
План
Содержание
1. Введение
2. Расчет коэффициента теплопередачи и поверхности теплопередачи выпарного аппарата
3. Блок-схема
4. Таблица идентификаторов
5. Решение на ЭВМ
Литература
Введение
Карбамид (мочевина) СО(NH2)2 представляет собой амид карбаминовой кислоты.
NH2
/
Структурная формула О=С
\
NH2
Карбамид выпускается в виде гранул или кристаллов. В данном производстве карбамид выпускается в виде гранул. По внешнему виду гранулы карбамида белые или слабо окрашенные. Чистый карбамид СО(NH2)2 содержит 46,6 % азота в амидной форме. Раствор карбамида в воде обладает слабощелочными свойствами. Физико-химические свойства карбамида: Таблица 1.1.
Температура плавления при атмосферном давлении, ОС 132,7
Удельная теплоемкость при 20 ОС, КДЖ. 1,34
Теплота плавления, КДЖ/кг 242
Теплота образования из простых веществ при 25 ОС, КДЖ/моль 333,27
Теплота растворения, КДЖ/кг 242
Теплопроводность плава при 35 ОС, Вт/(м к) 0,42
Динамическая вязкость при 132,7 ОС, МПА? с 2,58
Угол естественного откоса гранулированного продукта, град 35
С некоторыми солями карбамид образует комплексные соединения. При смешении в определенных соотношениях с аммиачной селитрой карбамид образует комплексные соединения, более растворимые, нежели каждая соль в отдельности.
Комплексные соединения карбамид образует с нормальными углеводородами и их производными. Реагируя с формальдегидом при нагревании в присутствии щелочи, карбамид образует различные высокомолекулярные продукты, которые применяются в промышленности для изготовления пластических масс. Продукт, полученный путем конденсации карбамида с формальдегидом в кислой среде представляет собой карбамидо-формальдегидное удобрение, содержащее до 40 % азота, большая часть которого находится в труднорастворимой, но полностью усвояемой растениями форме.
В воде карбамид растворяется хорошо. При повышении температуры его растворимость увеличивается.
Карбамид легко растворяется в жидком аммиаке, образуя соединение СО(NH2)2NH3 с массовой долей 71,9 % карбамида и 22,1 % вес аммиака и существующее только в растворах. С повышением температуры растворимость карбамида в аммиаке значительно возрастает.
Твердый карбамид, нагретый под вакуумом до 120-130 ОС возгоняется без разложения. Нагревание сухого карбамида при атмосферном давлении выше температуры плавления 132,7 ОС приводит к образованию биурета, а при 180-190 ОС - циануровой кислоты: амелида и др.
Карбамид выпускается по ГОСТ 2081-92Е, который соответствует требованиям к карбамиду, изготовляемому для нужд сельского хозяйства и для поставки на экспорт:
Таблица 1.2.
№ п/п Наименование показателей Норма марки Б
Высший сорт 1-й сорт 2-й сорт
1 Массовая доля азота в пересчете на сухое вещество, %, не менее 46,2 46,2 46,2
2 Массовая доля биурета, %, не более 1,4 1,4 1,4
3 Массовая доля воды, %, не более: метод высушивания 0,3 0,3 0,3 метод Фишера 0,5 0,5 0,6
4 Рассыпчатость, %. 100 100 100
5 Гранулометрический состав, %. массовая доля гранул размером, мм: От 1 до 4 мм, не менее 94 94 94
От 2 до 4 мм, не менее 70 50 -
Менее 1 мм, не более 3 5 5
Остаток на сите 6 мм, не более Отсутствие
6 Статическая прочность гранул, кгс/гранулу, не менее 0,7 0,5 0,3
Карбамид находит широкое применение как в сельском хозяйстве, так и в промышленности. В сельском хозяйстве он используется как азотное удобрение и кормовое средство.
Раствор карбамида концентрируют с помощью упаривания раствора карбамида в выпарных аппаратах. Раствор карбамида после стадии рецикла с концентрацией 69 - 75 % подвергается процессу выпаривания.
Процесс выпаривания протекает в двухступенчатой выпарной установке. В первой ступени выпарки раствор карбамида упаривается до массовой доли карбамида не менее 95 % при температуре 125 - 130 ОС и абсолютном давлении 25 - 49 КПА. Во второй ступени выпарки раствор карбамида концентрируется от 95 % до 99,8 % при температуре 135 - 140 ОС и абсолютном давлении не более 4,9 КПА.
Температура процесса упаривания поддерживается за счет подачи пара в межтрубное пространство испарителей. Полученный после выпаривания раствора карбамида плав направляется на грануляцию для получения товарного продукта.
В данном курсовой работе произведен расчет коэффициента теплопередачи и поверхности теплопередачи выпарного аппарата с использованием ЭВМ.
2. Расчет коэффициента теплопередачи
Коэффициент теплопередачи для корпуса выпарного аппарата определяют по уравнению аддитивности термических сопротивлений:
где a1- коэффициент теплоотдачи от конденсирующегося пара к стенке, Вт/(м2К); Sd/l - Суммарное термическое сопротивление, м2К/Вт; a2- коэффициент теплоотдачи от стенки к кипящему раствору, Вт/(м2К).
Примем, что суммарное термическое сопротивление равно термическому сопротивлению стенки dct/lct и накипи dн/lн (/lн=2Вт/МК). Термическое сопротивление загрязнений со стороны пара не учитываем.
Коэффициент теплоотдачи от конденсирующегося пара к стенке рассчитывается по формуле:
где r1 - теплота конденсации греющего пара, Дж/кг; rж, lж, мж -соответственно плотность (кг/м3), теплопроводность Вт/м*К, вязкость (Па*с) конденсата при средней температуре пленки тпл=тг.п.- Dt1 - разность температур конденсации пара и стенки, град.
Расчет a1 ведут методом последовательных приближений. В первом приближении примем Dt1=2,0 град. Тогда получим:
Для установившегося процесса передачи тепла справедливо уравнение:
где q - удельная тепловая нагрузка, Вт/м2; Dtct - перепад температур на стенке, град; Dt2 - разность между температурой стенки со стороны раствора и температурой кипения раствора, град.
Полезная разность температур в аппарате Dtп рассчитывается по формуле:
Отсюда:
Коэффициент теплоотдачи от стенки к кипящему раствору для пузырькового кипения в вертикальных кипятильных трубках при условии естественной циркуляции раствора равен, :
Подставив численные значения получим:
Физические свойства кипящего раствора карбамида и его паров приведены ниже: Таблица 2.1
Параметр Значение Литература
Теплопроводность раствора l, Вт/м*К 0,421
Плотность раствора r, кг/м3 1220
Теплоемкость раствора с, Дж/кг*К 1344
Вязкость раствора m, Па*с 2,58*10-3
Поверхностное натяжение s, Н/м 0,036
Теплота парообразования rв, Дж/кг 2170
Плотность пара rп, кг/м3 2,2
Проверим правильность первого приближения по равенству удельных тепловых нагрузок:
Как видим .
Для второго приближения примем Dt1=2,48 град.
Пренебрегая изменением физических свойств конденсата при изменении температуры на 0,48 град, рассчитываем a1:
Получим:
Как видим, .
Расхождение между тепловыми нагрузками не превышает 5%, поэтому расчет коэффициентов a1 и a2 на этом заканчиваем.
Находим теперь коэффициент теплопередачи:
Расчет поверхности теплопередачи
Рассчитаем поверхность теплопередачи выпарного аппарата:
где F- площадь теплообменника, м2; Q -количество передаваемой теплоты, Дж; k - коэффициент теплопередачи, Вт/(м2К); Dtп - полезная разность температур, К.
Вывод
Turbo Pascal Version 7.0 Copyright (c) 1983,92 Borland International
Ввести температуру греющего пара tg=
143
Ввести температуру раствора в корпусе tk=
132
Ввести разность температур конденсации пара и стенки dt1=