Продольное и поперечное обтекание тел вращения - Курсовая работа

бесплатно 0
4.5 87
Расчет внешнего осесимметричного обтекания тел вращения. Поперечное обтекание тел вращения с сохранением системы координат. Расчет обтекания тел вращения большого удлинения приближенным методом. Продольное и поперечное обтекание удлиненных тел вращения.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Теоретическая механика, изучая простейшие, механические формы движения и взаимодействия материальных тел, отвлекается от многих их действительных свойств и использует в качестве допустимой абстракции понятия материальной точки и системы материальных точек. Раздел теоретической механики, занимающийся движениями такого рода изменяемых сред, носит наименование механики сплошных сред, а часть ее, относящаяся к жидким и газообразным средам, - механики жидкости и газа. Углубление знаний в области движения сжимаемых жидкостей (газов) привело к возникновению газовой динамики, а применение ее результатов к авиации и ракетной технике положило основание к созданию новой дисциплины - аэротермодинамики, под которой сейчас понимают механику и термодинамику газа, движущегося с большими сверхзвуковыми и гиперзвуковыми скоростями. Требования главным образом ракетной техники поставили перед механикой жидкости и газа новые задачи, определяемые, с одной стороны, гиперзвуковыми (космическими) скоростями движения тел сквозь атмосферу в широком диапазоне высот, с другой - движениями газов в камерах горения и соплах двигателей. В этих условиях приходится иметь дело со сверхвысокими температурами, вызывающими диссоциацию и ионизацию газа, явлениями, связанными с разреженностью атмосферы на больших высотах полета, с разрушением (плавлением и испарением) твердой поверхности обтекаемого газом тела, излучением тепла поверхностью тела и самим газом, с движениями смесей реагирующих между собой газов (например, при горении) и многими другими физическими и химическими процессами.Приложение 1) возьмем в меридианальных плоскостях (r, x) эллиптическую систему координат (x, h), связанную с (r, x) соотношениями х = с ch x cos h, 0 ? x ? ?, r = с sh x sin h, 0 ? h ? 2p, где величина c представляет расстояние фокусов семейства координатных линий - софокусных эллипсов и гипербол - от начала координат. Будем искать частное решение этого уравнения в виде произведения двух функций от переменных l и m в отдельности j = L(l) M(m); (4) тогда в уравнении (2) переменные разделятся и из равенства в силу независимости l и m будет следовать, что каждая из частей равенства должна быть постоянной. Этим уравнениям удовлетворяют два класса независимых решений: функции Лежандра 1-города - полиномы Лежандра Pn (х), определяемые равенствами Представим решение уравнения (3) как сумму двух потенциалов: 1) потенциала j? однородного потока, набегающего на тело со скоростью U?; этот потенциал по первой из формул (1) будет равен j? = U?x = U?clm. и 2) потенциала j" скоростей возмущений, который выразим суммой частных решений (4). Примем во внимание, что потенциал скоростей возмущенного движения (т.е. обтекания за вычетом однородного потока со скоростью, равной скорости на бесконечности) должен стремиться к нулю при удалении от поверхности тела, причем .Наряду с продольным обтеканием тел вращения представляет интерес и поперечное обтекание, перпендикулярное (Приложение 1, б) к оси симметрии тела. Из сложения этих двух потоков можно получить обтекание тела вращения под любым углом. тогда, подставляя последнее выражение в уравнение (13) и разделяя функции независимых переменных, получим систему уравнений (k - произвольное число, которое будем считать положительным и целым) Комбинируя эти функции так, чтобы выражение потенциала скоростей возмущенного движения было ограниченным при l ® ?, получим общее выражение потенциала скоростей здесь последнее слагаемое представляет собой потенциал скоростей набегающего на тело однородного потока со скоростью на бесконечности V?, направленной параллельно оси Оу (Приложение 1, б). An1 = CV?Cn, An2 = An3 =… = 0, Bn1 = Bn2 =… = 0, т.е. довольствуясь решением, содержащим cos e, и, кроме того, представляя у по формулам, помещенным в начале § 1, как функцию l, m и e получим следующее выражение потенциала скоростей поперечно набегающего со скоростью V? вдоль оси Оу потока: или, используя определение присоединенных функций Лежандра (14), (15)В большинстве практических приложений приходится иметь дело с телами вращения, удлинение которых, т.е. отношение длины к максимальной толщине, довольно велико (порядка 8-12). Расчет обтекания тел вращения большого удлинения может быть произведен приближенным методом. Замечу, что фокусы удлиненного эллипсоида вращения находятся посередине отрезка, соединяющего точки пересечения большой оси и поверхности эллипсоида с центром кривизны поверхности в этих точках. Начало координат следует выбирать совпадающим с серединой отрезка, соединяющего фокусы; при таком выборе начала координат, чем ближе обтекаемое тело к эллипсоиду, тем меньше уравнение контура будет отличаться от простейшего равенства l = const. Если обтекаемое тело имеет большое удлинение, то поверхность его располагается в области значений l, мало превышающих значение l = chx = 1 или x = 0, соответствующее отрезку оси Oz, соединяющему фокусы.Изложенный в предыдущих параграфах (§ 1 и § 2) метод исследования продольного и поперечного обтеканий тел вр

План
Содержание

Введение

1. Продольное обтекание тел вращения

2. Поперечное обтекание тел вращения

3. Продольное и поперечное обтекание удлиненных тел вращения

4. Применение метода особенностей для расчета продольного и поперечного обтеканий тел вращения

Список источников

Введение
Теоретическая механика, изучая простейшие, механические формы движения и взаимодействия материальных тел, отвлекается от многих их действительных свойств и использует в качестве допустимой абстракции понятия материальной точки и системы материальных точек. Материальная система может быть как дискретной, состоящей из отдельных материальных точек, так и сплошной, представляющей непрерывные распределения вещества и физических характеристик его состояния и движения в пространстве. В этом случае систему называют сплошной материальной средой или, короче, сплошной средой.

Простейшим примером сплошной среды является неизменяемая среда или абсолютно твердое тело. Более общий образ изменяемой сплошной среды объединяет в механике как упругие и пластические, так и жидкие и газообразные тела.

Раздел теоретической механики, занимающийся движениями такого рода изменяемых сред, носит наименование механики сплошных сред, а часть ее, относящаяся к жидким и газообразным средам, - механики жидкости и газа. Этот термин получил в последнее время широкое распространение, придя на смену ранее употреблявшемуся термину гидромеханика, включавшему в себя как собственно механику жидкости (от греческого «хидрос» - вода), так и механику газов, в частности воздуха. Развитие авиации вызвало особый интерес к вопросам силового взаимодействия воздуха с движущимися в нем телами (теория крыла и винта) и движения тел в воздухе при наличии этих взаимодействий (динамика полета); так появилась аэромеханика. Углубление знаний в области движения сжимаемых жидкостей (газов) привело к возникновению газовой динамики, а применение ее результатов к авиации и ракетной технике положило основание к созданию новой дисциплины - аэротермодинамики, под которой сейчас понимают механику и термодинамику газа, движущегося с большими сверхзвуковыми и гиперзвуковыми скоростями.

Современный этап развития механики жидкости и газа, так же как и вообще механики сплошной среды, характеризуется значительно возросшей вязью с физикой. Требования главным образом ракетной техники поставили перед механикой жидкости и газа новые задачи, определяемые, с одной стороны, гиперзвуковыми (космическими) скоростями движения тел сквозь атмосферу в широком диапазоне высот, с другой - движениями газов в камерах горения и соплах двигателей. В этих условиях приходится иметь дело со сверхвысокими температурами, вызывающими диссоциацию и ионизацию газа, явлениями, связанными с разреженностью атмосферы на больших высотах полета, с разрушением (плавлением и испарением) твердой поверхности обтекаемого газом тела, излучением тепла поверхностью тела и самим газом, с движениями смесей реагирующих между собой газов (например, при горении) и многими другими физическими и химическими процессами. При использовании потоков ионизированного газа (плазмы) для непосредственного превращения тепла в электрическую энергию в магнитогидродинамическом генераторе необходимо рассматривать взаимодействие движущегося газа не только с твердыми телами, но и с электрическими и магнитными полями (магнитная гидродинамика). Все сказанное о газе относится, хотя и в несколько меньшей степени, и к жидкостям. В настоящее время жидкости широко используются как носители тепла в атомной энергетике; процессы тепломассопереноса в жидкостях лежат в основе многих главным образом химических производств, металлургия с успехом применяет магнитную гидродинамику для управления потоками жидких металлов в процессах плавки и др.

Вот почему предмет механики жидкости и газа сейчас уже нельзя сводить к одному механическому движению жидкости и газа и механическому взаимодействию их с твердыми телами. Механические движения сопровождаются общими движениями материи - сложными физическими процессами, которыми не только нельзя пренебрегать, как это делалось ранее, а наоборот, следует иметь в виду, что эти процессы во многих практических задачах играют главную роль, оставляя механическим движениям вспомогательное, подчиненное значение.

Кроме уже упомянутого ранее основного свойства принятой модели жидкой и газообразной среды - ее сплошности (непрерывности распределения массы и физико-механических характеристик среды), для динамики существенно второе основное свойство жидкой или газообразной среды - ее легкая подвижность, или текучесть, - выражающееся в том, что для большинства жидкостей и всех газов касательные напряжения (внутреннее трение) в среде отличны от нуля только при наличии относительного движения сдвига между слоями среды. При относительном покое внутреннее трение отсутствует. В этом заключается отличие жидкой или газообразной среды, например, от упругой среды, в которой касательные напряжения, обусловленные наличием деформаций (а не скоростей деформаций) сдвига, отличны от нуля и при относительном покое среды.

Обладая общими свойствами непрерывности и легкой подвижности, жидкости и газы отличаются друг от друга по физическим свойствам, связанным с различием во внутренней их молекулярной структуре.

Предполагая отсутствие внутреннего трения и процессов переноса, приходят к модели идеальной жидкости, которая оказывается пригодной для описания многих важных сторон явлений обтекания тел, но по самой своей сущности не может, например, объяснить происхождения сопротивления тел, разогревания жидкостей и газов за счет диссипации механической энергии в тепло, тепломассопереноса в жидкости и др. Для описания этих явлений необходимо пользоваться более сложной моделью вязкой, проводящей тепло и обладающей способностью переноса примесей (диффузии) жидкости или газа.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?