Принципы построения сетей на базе WDM технологий - Реферат

бесплатно 0
4.5 87
Причины появления технологии WDM. Модель взаимодействия транспортных технологий. Схемы реализации мультиплексоров WDM. Пространственное разделение каналов. Классификация оптических усилителей по способам применения. Нелинейные явления в волокне.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
РЕФЕРАТ по дисциплине: «Современные транспортные сети» на тему: «Принципы построения сетей на базе WDM технологий» Выполнил студент: ЗТК-38Мультиплексирование с разделением по длине волны (Wavelength Division Multiplexing, WDM), называемое также волновым мультиплексированием или спектральным уплотнением, напоминает хорошо известное мультиплексирование с частотным разделением каналов, но только выполняемое в оптической среде передачи. Лауде (компания Instruments SA) и сначала ее применение ограничивалось сферой междугородной телефонной связи и телевещания. Прежде линии связи использовались главным образом для транспортировки голоса, теперь же значительную часть передаваемого по ним трафика составляют данные, объем которых растет опережающими темпами (годовой прирост речевого трафика - 8%, а трафика данных - 35%).Рост объема передаваемых данных постепенно привел к исчерпанию пропускной способности существующего оптического волокна, со всей остротой поставив вопрос ее увеличения. Его можно решить тремя способами: проложив новый кабель, перейдя к более производительной аппаратуре временного мультиплексирования или применив WDM. Затем началось внедрение аппаратуры уровня OC-192/STM-64, обеспечивающей производительность 10 Гбит/с, однако проложенное волокно изначально не было рассчитано на столь высокие скорости передачи. Во-первых, при таких скоростях существенную роль начинают играть отражения сигнала от мест соединения кабелей и поляризационная модовая дисперсия, вызванная отклонением поперечного сечения волокна от круговой формы. Во-вторых, с ростом скорости передачи усиливается затухание (рассеяние) светового потока и ухудшается чувствительность фотоприемника, т. е. увеличивается минимальная мощность входного сигнала, при которой частота появления ошибок (BER) соответствует определенному пределу.Хотя, как правило, в этих системах и передается однотипный трафик, это диктуется используемыми методами синхронизации и единообразием процесса обработки. В отличие от систем SDH транспортируемый сигнал не упаковывается в контейнеры и не подвергается обработке в соответствии со структурой мультиплексирования SDH для формирования транспортного модуля STM-N, который только и может быть передан через физический уровень в канал связи (среду передачи). Если упрощенно представить многоуровневую модель взаимодействия основных технологий SDH/SONET, ATM, IP (без учета возможности переноса IP через ATM), осуществляющих транспортировку сигнала в глобальных цифровых сетях, и WDM, то до появления последней она имела вид, представленный на рис. Модель состояла из трех уровней и оптической среды передачи и показывала, что для транспортировки трафика верхнего уровня (ATM и IP) по оптической среде передачи он должен быть размещен (инкапсулирован) в транспортные модули STM-N/OC-n технологий SDH/SONET, способные, используя физический интерфейс этих технологий, пройти через физический уровень в оптическую среду передачи.Дальнейшие усилия, направленные на улучшение селективности (уменьшение разноса каналов) при использовании традиционной дискретной оптики не давали результатов лучше, чем следующие: · разнос каналов - 20-30 нм, · переходное затухание между каналами - 20 ДБ, · уровень вносимых потерь - 2-4 ДБ. В 1996-1998 годах произошел существенный прорыв в технологии мультиплексирования, обусловленный, с одной стороны, переходом к интегральным оптическим технологиям, с другой - миниатюризацией и улучшением качества изготовления элементов традиционной дискретной оптики. Две из них на основе интегральной оптики: одна использует выделение несущих на основе дифракционной решетки на массиве волноводов - AWG (Arrayed Waveguide Grating) и вторая на основе вогнутой дифракционной решетки - CG (Concave Grating). В третьей технологии применяется традиционная миниатюрная (на новом уровне технологии) дискретная оптика, использующая выделение каналов на основе технологии трехмерного оптического мультиплексирования - 3DO (3-D Optics WDM). Входной поток l0 = S li (i=1,2, ... n) подается в оптический волновод и распределяется по всем внутренним портам, откуда он распространяется по массиву световодов (с разным фазовым запаздыванием) до зеркала, отражается и подается со стороны внутренних выходных портов в тот же волновод, где происходит интерференция входной и отраженных волн.Ряд исследователей называет такие системы широкополосными WDM (разнос по длине волны - 240 нм) в противовес узкополосным WDM (разнос в которых был на порядок ниже - 24-12 нм, что давало возможность разместить в 3 окне (1550 нм) 4 канала). Хотя рассчитывать сейчас на взаимную совместимость оборудования разных производителей систем WDM не приходится, необходимо было стандартизовать номинальный ряд несущих - “канальный или частотный план”, чтобы дать производителям ориентир на будущее, а также позиционировать уже существующие WDM системы.

План
Содержание

1. Введение

2. Причины появления технологии WDM

3. Модель взаимодействия транспортных технологий

4. Схемы реализации мультиплексоров WDM

5. Узкополосные и широкополосные WDM

6. От WDM к DWDM

6.1 Мультиплексоры DWDM

6.2 Пространственное разделение каналов и стандартизация DWDM

6.3 Применение оптических усилителей EDFA

6.4 Типы оптических усилителей

6.5 Классификация оптических усилителей по способам применения

7. Нелинейные явления в волокне

8. Технология SWDM

9. Достоинства и недостатки

10. Глоссарий

11. Список использованных источников

1.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?