Практическое применение искусственных нейронных сетей в системах авторегулирования - Статья

бесплатно 0
4.5 157
Искусственные нейронные сети в пропорционально-интегрально-дифференциальных регуляторах. Нелинейное отображение множества входных сигналов в выходные. Структура регулятора с блоком автонастройки. Процесс "обучения" нейронной сети, его длительность.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Практическое применение искусственных нейронных сетей в системах авторегулированияНейронные сети, как и нечеткая логика, используются в ПИД регуляторах двумя путями: для построения самого регулятора и для построения блока настройки его коэффициентов. Особенностью нейронной сети является способность к «обучению», что позволяет передать нейронной сети опыт эксперта. Регулятор с нейронной сетью похож на регулятор с табличным управлением, однако отличается специальными методами настройки («обучения»), разработанными для нейронных сетей, и методами интерполяции данных. В отличие от нечеткого регулятора, где эксперт должен сформулировать правила настройки в лингвистических переменных, при использовании нейронной сети от эксперта не требуется формулировки правил - достаточно, чтобы он несколько раз сам настроил регулятор в процессе «обучения» нейронной сети. 2) состоит из множества связанных между собой нейронов, количество связей может составлять тысячи. Благодаря нелинейности функций активации и большому количеству настраиваемых коэффициентов (в работе [21] использовано 35 нейронов во входном слое и 25 - в выходном, при этом количество коэффициентов составило 1850) нейронная сеть может выполнять достаточно точно нелинейное отображение множества входных сигналов во множество выходных.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?