Переходы электронов между стационарными состояниями в кристалле под действием электромагнитного излучения. Собственное поглощение света. Уравнение Максвелла при отсутствии сторонних полей и объемных зарядов. Поглощение света решеткой, электронами.
Санкт-Петербургский государственный университетПроблему пропускания (поглощения) света будем рассматривать в двух аспектах: феноменологическом и микроскопическом (квантово-механическом). Зависимость коэффициента поглощения от частоты ?(?) или длины волны ?(?) называется спектром поглощения тела. С этой целью выразим интенсивность J через число фотонов объема пучка через q1, то за единицу времени через единичную площадку пройдет q1с фотонов, которые несут энергию q1сћ? = qћ?, где q = q1с есть поток фотонов, следовательно, Ослабление интенсивности J с точки зрения потока фотонов означает, что число фотонов в пучке уменьшается. При вычислении вероятности перехода в единицу времени этот множитель дает ?-функцию которая отражает факт выполнения закона сохранения энергии и при поглощении света: Вероятность перехода электрона из единичного объема к1-пространства в единичный объем к2-пространства в единицу времени равна Пользуясь тем, что при комнатных температурах в полупроводнике зона проводимости свободна, а валентная зона практически заполнена, можно утверждать, что число поглощенных фотонов в единицу времени на единицу площади равно числу переходов, следовательно, вероятность перехода: Коэффициент поглощения дается выражением: Так как мы интересуемся спектральной зависимостью коэффициента поглощения вблизи края собственного поглощения, то рассматриваем переходы между состояниями, находящимися вблизи экстремумов разрешенных зон.Поглощение света решеткой происходит в результате взаимодействия электромагнитного поля световой волны с движущимися зарядами узлов решетки. Колебания решетки приводят к поглощению света в соответствии с правилами отбора: , . Электрон или дырка, находясь в локализованном состоянии, может поглотить фотон, перейдя при этом в другое локализованное состояние или в свободное состояние. Полосы поглощения света при переходах носителей заряда с дискретных уровней лежат за границей собственного поглощения в сторону больших частот. Правило отбора при поглощении света носителями заряда в локализованном состоянии имеют вид , , где 2?-1 - размеры области локализации электрона или дырки.
Введение
Проблему пропускания (поглощения) света будем рассматривать в двух аспектах: феноменологическом и микроскопическом (квантово-механическом). Сначала рассмотрим феноменологический аспект.
Свет, попадая в твердое тело, вступает с ним во взаимодействие, связанное с обменом энергией. Обозначим через J интенсивность света, т.е. количество световой энергии, проходящей в единицу времени через нормальное единичное сечение. На границе вакуум - твердое тело свет отражается. Коэффициент отражения R определяет долю энергии, которая отражается на границе тела:
Зависимость коэффициента отражения от частоты R(?) или длины волны R(?) называется спектром отражения. Интенсивность, попавшая на твердое тело, ослабляется им в соответствии с законом Бугера-Ламбера:
где x - расстояние от границы тела до данной точки вдоль луча, ? называется коэффициентом поглощения, обратная к нему величина ?-1 численно равна толщине слоя, по прохождении через который интенсивность света уменьшается в e раз. Зависимость коэффициента поглощения от частоты ?(?) или длины волны ?(?) называется спектром поглощения тела.
Закон Бугера-Ламбера может быть получен на основе самых общих физических принципов. Рассмотрим слой вещества (x, x dx), через который проходит свет. Количество поглощенной энергии в слое толщенной dx должно быть пропорционально толщине слоя dx и количеству падающей на слой световой энергии J(x). Если обозначить коэффициент пропорциональности между поглощенной энергией и падающей через ?, то можно записать
Поскольку взаимодействие света с телом приводит к ослаблению интенсивности света, то перед DJ стоит знак минус (DJ<0). Таким образом, коэффициент ? показывает, на сколько ослабилась энергия из пучка единичной интенсивности в слое единичной толщены. Уравнение легко интегрируется:
Величине ? можно придать более наглядный смысл. С этой целью выразим интенсивность J через число фотонов объема пучка через q1, то за единицу времени через единичную площадку пройдет q1с фотонов, которые несут энергию q1сћ? = qћ?, где q = q1с есть поток фотонов, следовательно,
Ослабление интенсивности J с точки зрения потока фотонов означает, что число фотонов в пучке уменьшается. Ослабление пучка света может быть связано с рассеянием фотонов или их поглощением. Обозначим вероятность поглощения однофотонного потока на одном поглощающем центре через ?, число поглощающих центров в единице объема через N. В слое толщенных фотонов в единицу времени будет равно
Интегрируя уравнение, получим
Умножая равенство на энергию фотона ћ?:
Мы видим, что соотношение представляет собой закон Бургера-Ламберта, причем коэффициент поглощения связан с концентрацией поглощающих центров и эффективным сечением поглощения одного фотона в единицу времени: ? = ?N
Если взять величину (?N)-1, то ее можно назвать средней длиной свободного пробега lфот фотона в поглощающей среде: lфот = (?N)-1= ?-1
Величина ? - коэффициент поглощения - есть вероятность поглощения фотона на единице длины. Эффективное сечение ? зависит от энергии фотона и природы поглощающих центров. Если в полупроводнике имеются поглощающие центры Ni различной природы, характеризующиеся своими эффективным сечением ?i(?), то ? i= ?i(?)Ni.
Полный коэффициент поглощения ? есть сумма парциальных коэффициентов поглощения (вероятность независимых процессов складываются):
Таким образом, полный спектр поглощения складывается из спектров поглощения различных поглощающих центров.
Основными видами поглощения называют: 1. Собственное, или фундаментальное, поглощение света приводит к переходу электрона из валентной зоны в зону проводимости. Свободное поглощение возможно при условии, что ћ? ? E0. Она наблюдается в видимой и ближней инфракрасной областях в зависимости от ширины запрещенной зоны.
2. Примесное поглощение вызвано ионизацией атомов примеси, т.е. или переходом электронов от атома примеси в зону проводимости, или из валентной зоны на уровни примеси.
3. Поглощение свободными носителями заряда обусловлено их движением под действием электрических полей световой волны. На ускорение свободных носителей заряда волны отдает часть своей энергии, что приводит к ослаблению волны.
4. Световая волна вступает во взаимодействие с колебаниями решетки, изменяя число оптических фотонов. Это поглощение носит название поглощения колебаниями решетки, или решеточным поглощением.
5. Если происходит образование связанной пары электрон - дырка, то такое поглощение называется экситонным.
6. Внутризонное поглощение наблюдается в веществах, имеющих сложную структуру зон, подобно валентной зоне германия и кремния.
7. Поглощение света совокупностью свободных электронов и дырок называется плазменным поглощением.
Получить зависимость коэффициента поглощения от частоты можно только в рамках квантово-механическом рассмотрения. Основной принцип поглощения заключается во взаимодействии тела с электрической составляющей поля электромагнитной волны.
Собственное поглощение света
Оператор Гамильтона для электронов полупроводника, находящегося в световом поле, имеет вид
, где - оператор энергии электрона в электромагнитном поле.
Под действием электромагнитного излучения могут происходить переходы электронов между стационарными состояниями в кристалле. Вероятность перехода можно получить, пользуясь теорией возмущений:
Где ?i(r,t) = ?1к1(r,t): - волновая функция электрона в валентной зоне с энергией E1(к1), ему соответствует волновая функция: ;
?f(r,t) = ?2к2(r,t)- волновая функция электрона в зоне проводимости с энергией E2(к2) и волновой функцией:
Рассмотрим возмущение , индуцирующее переходы из одного состояния в другое. В качестве возмущения мы берем энергию электрона в поле световой волны, которую можно характеризовать напряженность E электрического поля и индукцией B магнитного поля.
Запишем уравнения Максвелла (в системе Гаусса) для случая, когда отсутствует сторонние поля и объемные заряды:
Вместо двух величин удобно ввести векторный потенциал A(r,t), который позволяет выразить через него E и B (в системе Гаусса):
Гамильтониан электрона в кристалле, находящемся в поле электромагнитной волны, в приближении эффективной массы имеет вид
Если ограничиться слабыми световыми потоками, которые можно получить от обычных источников света, то последний член, пропорциональный А2, по сравнению с линейным членом можно отбросить. Учитывая, что векторный потенциал должен удовлетворять условию Лоренца: DIVA = 0, выделим оператор возмущения где, Чтобы вычислить вероятность перехода, необходимо задать возмущение . Пусть кристалл взаимодействует с линейно-поляризованной монохроматической электромагнитной волной, тогда векторный потенциал также представляет собой плоскую волну: A(r,t) = A0ei(?t-(gr))
Для оператора возмущения имеем
(2)
Вычислим матричный элемент перехода с помощью волновых функций Блоха ?1к1(r,t) и ?2к2(r,t):
Этот матричный элемент отличен от нуля только в том случае, когда к1 g = к2 или P2 = P1 ћg, т.е. при поглощении света должен выполняться закон сохранения квазиимпульса: квазиимпульса состояния равен векторной сумме квазиимпульса начального состояния и импульса фотона.
Если k1 = 0, то k2 = g. Но такие переходы невозможны, поскольку в этом случае (А0к2) = (А0g) = 0(условие поперечности световой волны). Квазиимпульс электронов с тепловой энергией имеет . При T = 300К и m* = 10-27г имеем P ? 10-20г•см/сек и к ? 107см-1. Для света с длиной волны , что значительно меньше к для тепловых электронов. В таком случае, пренебрегая величиной ћg по сравнения с P1, получим правила отбора P2 = P1; к1 = к2.
Переходы из валентной зоны в зону проводимости в соответствии с правилами отбора - с сохранением волнового вектора электрона - носят название прямых, или вертикальных. Электрон поглотив фотон, переходит из некоторой точки зоны Бриллюэна валентной зоны в эквивалентную точку зоны Бриллюэна зоны проводимости.
Матричный элемент оператора возмущения входит член . При вычислении вероятности перехода в единицу времени этот множитель дает ?-функцию которая отражает факт выполнения закона сохранения энергии и при поглощении света:
Вероятность перехода электрона из единичного объема к1-пространства в единичный объем к2-пространства в единицу времени равна
Предполагая в дальнейшем, что закон сохранения энергии и квазиимпульса выполняются, мы можем опустить ?-функцию.
Выразим вероятность перехода электрона через число фотонов, проходящих через полупроводник. Для этого учтем, что средняя плотность световой энергии равна (мгновенная плотность равна ), поток энергии равен , где n-коэффициент преломления вещества и - скорость света в нем. Поток фотонов q найдем, если поток энергии разделим на энергию одного фотона:
Найдем связь между А0 и E0:
и отсюда следует
Или В итоге для вероятности перехода имеем
Переход электрона из одного состояния в другое возможен только в результате поглощения фотонов, поэтому есть вероятность поглощения фотонов. Так как она пропорциональна потоку фотонов q, то эффективное сечение поглощения однофотонного потока на одном электроне мы получим, разделив на поток фотонов q:
Оценим величину эффективного сечения поглощения однофотонного потока электроном, предположив, что m*=10-27г, ??16, n?4, к2?107см-1 при ??1014сек-1 и cos2?=1/3, получим ?q=10-26cм2 Это значение соответствует площади поперечного сечения электрона в классической физике.
Если рассматривать вероятность, отнесенную к одному фотону, который образует поток , то
Перейдем к нахождению коэффициента поглощения ?. В элементе объема имеется свободных и занятых состояний. В этом элементе объема имеется занятых и свободных состояний. Поскольку вероятность прямых и обратных переходов равны, то при вычислении коэффициента поглощения света необходимо учитывать как прямые, так и обратные переходы, вызванные светом. Спонтанными переходами (рекомбинационными переходами) мы будем при этом пренебрегать. За единицу времени будет поглощено фотонов
Первый член в этом выражении определяет число поглощенных фотонов, второй - излученных. В обычных условиях уровни энергии заняты электронами в соответствии с равновесным распределением их по состояниям:
т.е. валентная зона практически заполнена, а зона проводимости практически свободна, поэтому обратными переходами можно пренебречь. (Но если в полупроводнике создать инверсную заселенность уровней, то такой полупроводник будет усиливать излучение, а не поглощать.) Умножим на ћ?, получим количество энергии, поглощаемой в единице объема в единицу времени: Интегрируя с учетом , получим
Исключим зависимость ? от E1, E2 и , учитывая, что величина эффективной массы m*, входящая во все выражения, есть эффективная масса электрона в валентной зоне, или массы дырки. Выразим через ?:
При к1 = к2 имеем
Где
- приведенная эффективная масса электрона и дырки.
Независящий от времени матричный элемент перехода можно вычислить с помощью выражения где
- матричный элемент перехода для импульса
Пользуясь тем, что при комнатных температурах в полупроводнике зона проводимости свободна, а валентная зона практически заполнена, можно утверждать, что число поглощенных фотонов в единицу времени на единицу площади равно числу переходов, следовательно, вероятность перехода:
Коэффициент поглощения дается выражением:
Так как мы интересуемся спектральной зависимостью коэффициента поглощения вблизи края собственного поглощения, то рассматриваем переходы между состояниями, находящимися вблизи экстремумов разрешенных зон. Матричный элемент перехода для импульса в этом случае можно представить в виде ряда:
Если , переход называется разрешенным. Ограничиваясь в этом случае первым членом ряда, получим где - сумма значений для всех точек, соответствующих рассматриваемым экстремумам в зоне Бриллюэна.
Переходя к переменным интегрирования , получим
,
где мы положили . Вводя переменную интегрирования и используя ?-функцию, получим
Рис 1. Зонная схема вблизи экстремумов для прямозонного полупроводника переход электрон поглощение свет
Рассмотрим, как ? зависит от используемой модели зон. Если в полупроводнике экстремумы находятся в центре зоны Бриллюэна, то для скалярной эффективной массы имеем: ; . Так как вероятность перехода отлична от нуля в том случае, если выполняется закон сохранения энергии, то ? можно выразить через N1(E) и N2(E2) - функции плотности состояний дырки и электрона в валентной зоне и зоне проводимости соответственно:
И Получим, что коэффициент поглощения является функцией
Согласно правилам отбора переходы могут быть, в дипольном приближении, разрешенными и запрещенными. Для запрещенных переходов, ряда будет равно нулю, поэтому разложение начинается со второго члена, что дает в результате зависимость:
Если , то ?=0 - собственное поглощение имеет резкую границу со стороны малых частот. Граница собственного поглощения определяется (оптической) шириной запрещенной зоны для вертикальных переходов: ;
Если выразить ширину запрещенной зоны в ЭВ, то граница собственного поглощения можно вычислить из соотношения:
Выражение на ? справедливо только при переходах в полупроводниках со сферическими поверхностями энергии и экстремумами, лежащими в центре зоны Бриллюэна.
Таким образом, прямые переходы должны давать зависимость ? от в виде: где r может принимать значения от 1/2 до 3/2 при прямых 2 3 при не вертикальных переходах. Граница поглощения определяет оптическую ширину запрещенной зоны , которая превосходит минимальное расстояние между валентной зоны и зоны проводимости, определяющее термическое возбуждение электронов.
Поскольку существует состояния, разделенные энергетическими промежутками меньшими, чем , то возникает вопрос, возможно ли поглощение фотона с энергией меньшей, чем . Очевидно что при этом правела отбора к1 g = к2, P2 = P1 ћg должны нарушаться. Однако нарушение правил отбора к1 g = к2 не может означать нарушения законы сохранения квазиимпульса (импульса). Переход электрона электрона из состояния к1 ? 0 в состояние к2 ? к0 возможен, если изменение импульса электрона будет компенсироваться изменением импульса фотона.
Рассмотрим две возможности. Первая: Электрон переходит из состояния E1(0) в состояние E2(к0) в в результате поглощения фотона с энергией длинноволнового фотона с энергией , при этом электрон оказывается в состоянии E2(0). Испустив фотон с энергией и волновым вектором - к0, электрон оказывается в состоянии E2(к0). Таким образом, электрон переходит из E1(0) в E2(к0), поглотив фотон с энергией . Необходимая для переброса электрона энергия сообщается электрону решеткой и решетке же она передается электроном. Переход электрона происходит через промежуточное состояние, в котором происходит преобразование длинноволнового фотона в коротковолновый. Другими словами, переход электрона из зоны проводимости в валентную зону происходит за счет энергии фотона, изменение же импульса электрона компенсируется решеткой (фононом).
Разобранная выше схема не является единственно возможной. Действительно, электрон в состоянии E1(0) может поглотить фонон с энергией и квазиимпульсом ћк0, в результате чего он окажется в некотором виртуальном состоянии; испустив длинноволновой фотон с энергией , электрон окажется в состоянии E2(к0). Электрон в состоянии E1(0) может испустить фонон с энергией и импульсом (-ћк0) и оказаться при этом в некотором виртуальном состоянии, поглотив затем фотон с энергией , электрон окажется в состоянии E2(к0). Таким образом, переход электрона из состояния E1(0) в состояние E2(к0) при к1?0 и к2?к0 происходит через ряд виртуальных состояний. Чтобы получить зависимость ?(?), необходимо учесть законы сохранения энергии и импульса
, , где ?фон, Кфон - частота и волновой вектор поглощаемого (плюс) и испускаемого (минус) фотона. Граница поглощения должна определяться условием
Таким образом, существуют две границы собственного поглощения, оптическая ширина запрещенной зоны (минимальная) при непрямых невертикальных переходах должна быть меньше термической ширины запрещенной зоны на энергию фонона .
Если предположить, что возмущение содержит теперь некоторую характеристику фононов, то вероятность перехода электрона будет определяться как матричным элементом возмущения со стороны электромагнитного поля, так и матричным элементом возмущения со стороны решетки.
В предположении, что матричный элемент возмущения со стороны решетки не зависит от частоты фонона, мы получим зависимость коэффициента поглощения от частоты в виде
Если учесть, что число фононов зависит от их энергии и температуры, то выражение для ? можно записать в виде
Первый член описывает процесс поглощения света с поглощением фононов, число которых пропорционально величине , второй член описывает процесс поглощения фотона с испусканием фонона, вероятность испускания фонона равна вероятности того, что данное колебание состояние не возбуждено, т.е.
Рис. 2. Зонная схема вблизи экстремумов зон Бриллюэна для непрямозонного полупроводника
В заключение этого рассмотрения сравним коэффициенты поглощения света в результате прямых и не прямых переходов. Прямой переход определяется вероятностью встречи двух частиц - электрона и фотона. При не прямых переходах должны встретиться три частицы - электрон, фотон фонон. Но это означает, что непрямой переход является процессом менее вероятным, чем прямой, поэтому коэффициента поглощения света при прямых переходах должен достичь больших величин, чем для непрямых переходов. Таким образом: 1. Переходы электрона при поглощении света называется прямыми, или вертикальными, если выполняется правело отборак1 g=к2, или к1=к2. Переходы называются непрямыми, или невертикальными, если .
2. Край собственного поглощения определяется при прямых и непрямых переходах соответственно соотношениями: , 3. Коэффициент поглощения ? у края собственного поглощения пропорционален разности в степени r: где r принимает значения от 1/2 до 3 в зависимости от структуры зон энергии.
4. Собственное поглощение приводит к генерации пары свободных носителей заряда - электрон и дырка.
5. Собственное поглощение приводит к быстрому поглощению света; длина свободного пробега фотона lфт при имеет величину порядка .
Вывод
И в заключение хотелось бы вкратце рассказать про другие виды поглощения.
Поглощение света решеткой
Поглощение света решеткой происходит в результате взаимодействия электромагнитного поля световой волны с движущимися зарядами узлов решетки.
1. Колебания решетки приводят к поглощению света в соответствии с правилами отбора: , .
2. Из правил отбора следует, что свет поглощается только оптическими колебаниями решетки, при этом .
Свет поглощается поперечными оптическими колебаниями решетки. Колебания решетки проявляются в спектре отражения в виде «остаточных» лучей.
Поглощение света электронами в локализованных состояниях
Электрон или дырка, находясь в локализованном состоянии, может поглотить фотон, перейдя при этом в другое локализованное состояние или в свободное состояние. Полосы поглощения света при переходах носителей заряда с дискретных уровней лежат за границей собственного поглощения в сторону больших частот. Положение полосы поглощения можно определить соотношением
1. Правило отбора при поглощении света носителями заряда в локализованном состоянии имеют вид , , где 2?-1 - размеры области локализации электрона или дырки.
2. Примесное поглощение имеет вид узких полос, если происходит переход электрона между дискретными уровнями энергии, соответствующих возбужденному состоянию примеси, и сравнительно широких полос при фотоионизации. Энергия фотоионизации несколько больше термической ионизации.
3. Примесное поглощение приводит к генерации носителя заряда одного типа.
Переходы между зоной и примесным уровнем
Переходы между нейтральным донором и зоной проводимости или между валентной зоной и нейтральным акцептором могут произойти в результате поглощения фотона с малой энергией (Рис. 3). Что бы такой процесс поглощения имел место, энергия фотона должно быть не меньше энергии ионизации примеси Ei. Обычно эта энергия соответствует далекой инфракрасной области спектра. Наблюдаются пики поглощения, связанные с переходами в состояние с n = 1,2,3. Пики с большими энергиями сливаются с полосой, соответствующей полной ионизации донора. Отметим, что, хотя полностью конечных состояний (зона проводимости) увеличивается с увеличением энергией, коэффициент поглощения, соответствующий полной ионизации примеси (переход в зону проводимости), уменьшается с увеличением энергии фотона. При , где к0 - квазиимпульс, соответствующей дну зоны проводимости, волновая функция примеси уменьшается приблизительно как .
Переходы между валентной зоной и ионизованным донором (уровень должен быть пустым, чтобы переход мог произойти) или между ионизованными акцептором и зоной проводимости имеют место при энергиях фотона .
В отличие от экситонного поглощения, которое связано с переходом между дискретным уровнем и хорошо определенным краем зоны, в переходах между примесью и зоной фигурирует вся полоса уровней. Следовательно, переходы между примесью и зоной должны проявляться в виде уступа на краю поглощения, с порогом при энергии . Коэффициент поглощения для переходов с участием примесей гораздо меньше, чем для межзонных переходов, поскольку плотность примесных состояний гораздо меньше плотности состояний в зонах.
Список литературы
1. Киреев П.С. «Физика полупроводников» М «Высшая школа» 1975 г. 584 стр.
2. Ж. Панков «Оптические процессы в полупроводниках» Издательство «Мир» Москва 1973 г.
3. В.Л. Бонч-Бруевич, С.Г. Калашников «Физика полупроводников» Москва «Наука» 1990 г.
4. А.И. Ансельм «Введение в теорию полупроводников» Москва «Наука» 1978 г.
Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы