Нелинейная корреляции для парного и множественного уравнений регрессии. Проверка их значимости. Оценка качества построенной модели с помощью средней ошибки аппроксимации. Интервальная оценка функции регрессии и её параметров. Метод наименьших квадратов.
При низкой оригинальности работы "Парная нелинейная корреляционная зависимость в исследованиях экономических вопросов", Вы можете повысить уникальность этой работы до 80-100%
При функциональной зависимости двух величин значению одной из них обязательно соответствует одно или несколько точно определенных значений другой величины. Функциональная связь двух факторов возможна лишь при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. Функциональная связь одной величины с множеством других возможна, если эта величина зависит только от этого множества факторов. Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения других (другой), и эти другие величины принимают некоторые значения с определенными вероятностями. Функциональную зависимость в таком случае следует считать частным случаем статистической: значению одного фактора соответствуют значения других факторов с вероятностью, равной единице.Уравнение нелинейной регрессии, как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции: где Если нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого в этом случае совпадает с индексом корреляции Rxy= ryz, где z - преобразованная величина признака-фактора, например, z = 1/x или z = ln x. Возводя данное выражение в квадрат, получим: Преобразовывая далее, придем к следующему выражению для следовательно, Но так как и , То Таким образом, приходим к формуле индекса корреляции В этом случае линейный коэффициент корреляции по преобразованным значениям признаков дает лишь приближенную оценку тесноты связи и численно не совпадает с индексом корреляции. Соответственно квадрат его значения будет характеризовать отношение факторной суммы квадратов отклонений к общей, но не для у, а для его логарифмов: Между тем при расчете индекса корреляции корреляции используются суммы квадратов отклонений признака у, а не их логарифмов.Например, если для фирмы модель прибыли у имеет вид Тогда независимо от того, что фактор х1 задан линейно, а х2, х3, х4 - в логарифмах, оценка тесноты связи может быть произведена с помощью линейного коэффициента множественной корреляции. Индекс детерминации для нелинейных по оцениваемым параметрам функции принять называть «квази R2» определения по функциям, использующим логарифмические преобразования (степенная, экспонента), необходимо найти сначала теоретические значения ln y, затем трансформировать их через антилогарифмы, то есть найти теоретические значения результативного признака и далее определять индекс детерминации как «квази R2» по формуле Величина индекса множественной корреляции, определенная как «квази R2» не будет совпадать с совокупным коэффициентом корреляции. Для того, чтобы не допустить возможного преувеличения тесноты связи, используется скорректированный индекс (коэффициент) множественной корреляции.В математике мы привыкли к тому, что речь идет о функциональной зависимости, когда каждому значению одной переменной соответствует вполне определенное значение другой. В экономике в большинстве случаев, между переменными величинами существуют зависимости, когда каждому значению одной переменной соответствует не какое-то определенное, а множество возможных значений другой переменной (или определенное условное распределение другой переменной). В силу неоднозначности статистической зависимости между и , представляет интерес усредненная по схема зависимости, т.е. закономерность в измерении условного математического ожидания (математическое ожидание случайной переменной , вычисленного в предположении, что переменная приняла значение ) в зависимости . Определение: Когда каждому значению одной переменной соответствует определенное условное математическое ожидание (среднее значение) другой, то такая зависимость называется корреляционной. Иначе, корреляционной зависимостью между двумя переменными называется функциональная зависимость между значениями одной и средним значением другой (условным математическим ожиданием), (1) это уравнение называется модельным уравнением регрессии (или просто уравнением регрессии, или функцией регрессии, а ее график - линией регрессии).Проверить значимость уравнения регрессии - значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Проверка значимости уравнения регрессии производится на основе дисперсионного анализа. Обозначим через - теоретически вычисляемые по формуле значения, тогда Преобразуем формулу дисперсии с учетом вышеуказанной суммы: Далее Введем обозначения: TSS (total sum of sguares) - вся дисперсия: сумма квадратов отклонений от среднего. RSS (regression sum of sguares) - объясненная часть всей дисперсии (обусловленная регрессией), факторная, объясненная дисперсия.Оценку качества построенной модели можно определить через коэффициент (и
План
Содержание
Введение
1. Нелинейная корреляция
2. Нелинейная корреляции для множественного уравнения регрессии
3. Парная регрессия и корреляция
4. Оценка значимости уравнения регрессии
5. Оценка качества модели
6. Интервальная оценка функции регрессии и ее параметров
7. Метод наименьших квадратов
Заключение
Список литературы
Введение
Величины, характеризующие различные свойства объектов, могут быть независимыми или взаимосвязанными. Различают два вида зависимостей между величинами (факторами): функциональную и статистическую.
При функциональной зависимости двух величин значению одной из них обязательно соответствует одно или несколько точно определенных значений другой величины. Функциональная связь двух факторов возможна лишь при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. Функциональная связь одной величины с множеством других возможна, если эта величина зависит только от этого множества факторов. В реальных ситуациях существует бесконечно большое количество свойств самого объекта и внешней среды, влияющих друг на друга, поэтому такого рода связи не существуют, иначе говоря, функциональные связи являются математическими абстракциями. Их применение допустимо тогда, когда соответствующая величина в основном зависит от соответствующих факторов.
При исследовании многие параметры следует считать случайными, что исключает проявление однозначного соответствия значений. Воздействие общих факторов, наличие объективных закономерностей в поведении объектов приводят лишь к проявлению статистической зависимости. Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения других (другой), и эти другие величины принимают некоторые значения с определенными вероятностями. Функциональную зависимость в таком случае следует считать частным случаем статистической: значению одного фактора соответствуют значения других факторов с вероятностью, равной единице. Однако на практике такое рассмотрение функциональной связи применения не нашло.
Более важным частным случаем статистической зависимости является корреляционная зависимость, характеризующая взаимосвязь значений одних случайных величин со средним значением других, хотя в каждом отдельном случае любая взаимосвязанная величина может принимать различные значения.
Если же у взаимосвязанных величин вариацию имеет только одна переменная, а другая является детерминированной, то такую связь называют не корреляционной, а регрессионной. Например, при анализе скорости обмена с жесткими дисками можно оценивать регрессию этой характеристики на определенные модели, но не следует говорить о корреляции между моделью и скоростью.
При исследовании зависимости между одной величиной и такими характеристиками другой, как, например, моменты старших порядков (а не среднее значение), то эта связь будет называться статистической, а не корреляционной.
Корреляционная связь описывает следующие виды зависимостей: причинную зависимость между значениями параметров, "зависимость" между следствиями общей причины.
Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили показатели, характеризующие взаимосвязь двух случайных величин (парные показатели): корреляционный момент, коэффициент корреляции.
Одной из типовых задач обработки статистических данных является определение количественной зависимости показателей качества объекта от значений его параметров и характеристик внешней среды. Примером такой постановки задачи является установление зависимости между временем обработки запросов к базе данных и интенсивностью входного потока. Время обработки зависит от многих факторов, в том числе от размещения искомой информации на внешних носителях, сложности запроса. Следовательно, время обработки конкретного запроса можно считать случайной величиной.
Но вместе с тем, при увеличении интенсивности потока запросов следует ожидать возрастания его среднего значения, т.е. считать, что время обработки и интенсивность потока запросов связаны корреляционной зависимостью. корреляция регрессия уравнение
1.
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы