Обґрунтування та побудува математичої моделі процесу переміщення сипкого матеріалу у міжвитковому просторі безконсольного шнека ПГУ, встановивши при цьому вплив геометричних характеристик шнеконапірного механізму ПГУ на керування процесом потоку.
При низкой оригинальности работы "Підвищення ефективності роботи завантажувальної пневмогвинтової установки", Вы можете повысить уникальность этой работы до 80-100%
Тому, дорожньо-будівельні підприємства підвищують ефективність роботи існуючих механічних живильників та впроваджують у виробництво інші засоби механізації, що дозволяють поєднувати транспортування сипких матеріалів з технологічними операціями (дозування, підмішування та ін.), наприклад, пневмомеханічні живильники, одним з яких є завантажувальна пневмогвинтова установка (ПГУ). Сторонні домішки у сипкому матеріалі, биття шнека, недостатня герметизація робочого процесу у ШМ забезпечують високу енергоємність ПГУ. Тема дисертаційної роботи відповідає напрямку роботи Кримської академії природоохоронного та курортного будівництва, програмі науково-дослідних робіт Міністерства освіти і науки України у межах пріоритетного напрямку “Екологічно чиста енергетика та ресурсозберігаючі технології” (Тема “Розробка науково-методичних та технологічних основ екологізації будівельного комплексу України“ № 0197U015932). Задачі дослідження: обґрунтувати та побудувати математичну модель процесу переміщення сипкого матеріалу у міжвитковому просторі безконсольного шнека ПГУ, встановивши при цьому вплив геометричних характеристик та режимних параметрів шнеконапірного механізму ПГУ на керування процесом формування потоку сипкого матеріалу на вході і виході безконсольного шнека цієї машини за критерієм енергоємності; розробити багатофакторну регресійну модель робочого процесу у шнеконапірному механізмі та підтвердити результати теоретичних досліджень шляхом випробування дослідно-промислового зразка ПГУ, обладнаної безконсольним шнеком з зустрічно спрямованими напірними витками; запропонувати нові схеми ПГУ із складальними робочими органами малоенергоємного ШМ для виконання технологічних операцій із сипкими матеріалами; уточнити методику визначення раціональних геометричних характеристик та режимних параметрів шнеконапірного механізму ПГУ. Обґрунтуванні та побудові математичної моделі процесу взаємодії безконсольного шнека з сипким матеріалом, що дозволила вперше науково обгрунтувати геометричні характеристики і режимні параметри ШМ, а також прогнозувати ефективні конструкції ПГУ;Процес взаємодії сипкого матеріалу з шнеком ШМ ПГУ має специфічні властивості (наявність протитиснення стиснутого повітря з боку змішувальної камери, змінний крок напірних витків, необхідність створення пилової пробки, велике число обертів шнека та ін.), що ускладнює розрахунок ШМ ПГУ. У розділі 2 проведений теоретичний аналіз процесу взаємодії безконсольного шнека з сипким матеріалом та встановлені визначаючі параметри, які були прийняті за основу при побудові формул для продуктивності, потужності, енергоємності та розрахунку геометричних характеристик нового ШМ. У якості початкового пункту для виведення диференційного рівняння опису процесу взаємодії сипкого матеріалу у каналі з безконсольним шнеком, а також співвідношень для продуктивності, потужності і енергоємності використовували рівняння течії ньютонівської рідини у сталому режимі, а також залежності про зміну тиску стислого повітря вздовж шнека та зміни осьової складової швидкості по радіусу шнека Q = (p2/240)Dш3(1 - `dв)sinb COSBFD]n - (1/(96ҐZ))Dш3(1 - `dв)3SINBCOSBFP](Рк/m), де m - коефіцієнт динамічної вязкості для сипкого матеріалу; FD, FP - функції, які залежать від співвідношення H /W; Dш - зовнішній діаметр шнека, м; dв-діаметр вала шнека, м; n - число обертів шнека, об/хв;`dв = dв / Dш - відносний діаметр вала шнека. Q = Qmax (N - No)/(N - N_), де Qmax - максимальна обємна продуктивність, м3/с; N_ - потужність, що витрачається на зріз матеріалу у зазорі між шнеком та корпусом, КВТ; No = N_ N_h - потужність, що витрачається на подолання опору зворотного потоку та на зріз матеріалу у зазорі між шнеком та корпусом, КВТ; h={((1-`dв)/6p)(FP/FD)(l/ZH)[(1 3sin2b)/(sinbcosb)]} - допоміжна величина, що повуязана з геометричними характеристиками шнека.1.На основі огляду та аналізу закордонної та вітчизняної науково-технічної інформації встановлено, що найбільш доцільно для технологічної переробки сипкого матеріалу використовувати ПГУ з безконсольним шнеком.
План
ОСНОВНИЙ ЗМІСТ РОБОТИ
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы